Présentation
En anglaisAuteur(s)
-
Bernard COLIN : Directeur Ingénierie à SDMO Groupes électrogènes
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Dans la société actuelle, toutes les activités, qu’elles soient professionnelles ou privées, sont consommatrices d’énergie électrique. Toute interruption ou perturbation dans la distribution de cette énergie entraîne des désordres qui peuvent devenir insupportables par l’usager. L’importance de la continuité et de la qualité de l’alimentation électrique est fonction de l’activité concernée. Certaines applications exigent une permanence quasi complète de l’alimentation car une absence met en péril la sécurité des personnes ou des biens. En tête de ces consommateurs viennent bien évidemment l’activité hospitalière, les sites recevant du public et les installations de protection contre l’incendie. Le législateur s’est préoccupé de ce problème et tout site de cette nature doit être équipé de moyens d’alimentation de secours en énergie électrique. D’autres consommateurs, pour lesquels la fiabilité de l’alimentation électrique ne se mesure pas en terme de risques humains, ne peuvent admettre toutefois de coupure car celle-ci peut avoir des conséquences extrêmement préjudiciables sur le plan économique. Les activités mettant en jeu des systèmes informatiques sont un exemple évident de ce type d’exigence puisqu’elles ne peuvent admettre la moindre coupure de quelque durée que ce soit.
Divers moyens de secours ont donc été envisagés et mis en œuvre ; le choix de la source de remplacement utilisée est fonction de plusieurs critères :
-
le temps de coupure maximal admissible,
-
la nature de la charge à réalimenter,
-
la puissance de la charge à secourir.
Plusieurs sources de remplacement peuvent être mentionnées.
-
La batterie à courant continu est rarement suffisante par elle-même car la plupart des applications réclament une alimentation en courant alternatif. Elle est toutefois utilisée en éclairage de secours par exemple.
-
L’onduleur permet d’obtenir à partir d’une source à courant continu, une alimentation en courant alternatif. Cette solution est utilisée quand l’autonomie et la puissance nécessaire sont relativement limitées (quelques kVA pendant quelques minutes). Cette source de remplacement est généralement associée à un autre moyen de secours (un groupe électrogène) permettant d’augmenter la durée de l’autonomie.
-
Le groupe électrogène permet d’atteindre des puissances et des durées de fonctionnement importantes.
Outre son application en source de remplacement, le groupe électrogène offre des possibilités d’utilisation dans différents domaines.
-
Des groupes de base sont destinés à fournir la totalité de la puissance électrique d’une zone non alimentée par un distributeur. Cette application se ren-contre surtout dans les pays en voie de développement car elle permet d’éviter des investissements lourds et peut se mettre en œuvre dans des délais très courts.
-
Des groupes d’écrêtage sont destinés à fournir tout ou partie de la puissance consommée sur un site pour limiter le montant de la prime fixe ou pour bénéficier de conditions tarifaires liées à cette fonction ; cette application est généralement couplée à l’application groupe de secours qu’elle permet souvent de rentabiliser ; ainsi de nombreux hypermarchés, qui doivent s’équiper de groupes de secours, rentabilisent ceux-ci en faisant de l’écrêtage.
-
Des groupes de cogénération destinés, comme les groupes d’écrêtage, à fournir tout ou partie de l’énergie électrique consommée sur un site ; toutefois pour des moteurs fonctionnant au gaz, la fonction groupe de secours n’est pas toujours acceptable car elle implique dans certains cas, comme l’alimentation des hôpitaux, de disposer d’une énergie primaire stockable ce qui n’est pas le cas du gaz.
Dans le présent exposé, nous ne traitons que les groupes électrogènes dans les applications secours et production. L’application cogénération ne sera donc pas évoquée.
Un groupe électrogène qui est une machine permettant de transformer en électricité un combustible primaire comme le fioul ou le gaz est constitué de deux composants principaux :
-
un moteur thermique transformant l’énergie primaire en énergie méca-nique ;
-
un alternateur transformant l’énergie mécanique développée par le moteur thermique en énergie électrique.
La puissance d’un groupe électrogène équipé d’un moteur Diesel va de moins de 1 kVA à plusieurs MVA et la vitesse de rotation est également variable suivant la puissance et l’application (tableau 1).
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Réseaux électriques et applications
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Déclassement
La puissance développée par un moteur Diesel est fonction de la masse de combustible et donc de la masse d’air emmagasinée par le cylindre.
Cette masse d’air est une fonction :
-
de la température d’air aspiré ;
-
de la pression atmosphérique ;
-
de la température d’eau du circuit à basse température assurant le refroidissement de l’air de suralimentation.
La puissance d’un moteur Diesel est donc donnée en fonction de ces paramètres dont la variation peut entraîner un déclassement de puissance.
La norme précise les conditions de référence suivantes :
-
pression barométrique globale : 100 kPa ;
-
température de l’air : 25 ×C ;
-
température de l’eau à basse température : 25 ×C.
Les tableaux de déclassement sont différents suivant les constructeurs de moteurs. Le tableau 2 est un exemple des déclassements que l’on peut rencontrer.
Le déclassement total est donné par la formule :
De même, la puissance assignée de l’alternateur est définie dans des conditions normales de référence qui sont :
-
température de l’air de refroidissement : 40 ×C ;
-
altitude : .
Si les conditions de fonctionnement s’éloignent de ces valeurs, il faut appliquer des coefficients de déclassement dont le tableau 3 donne un exemple.
Le coefficient global de déclassement lié à l’alternateur est donné par :
Le coefficient à appliquer au groupe correspond bien entendu à la valeur la plus pénalisante des deux valeurs correspondant au déclassement du moteur et au déclassement de l’alternateur.
Cet article fait partie de l’offre
Réseaux électriques et applications
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Déclassement
1 Constructeurs, distributeurs
Electro Diesel http://www.electrodiesel.fr
Eneria (groupe Monnoyeur) http://www.eneria.com
Groel
SDMO Industrie http://www.sdmo.com
SEMT Pielstick http://www.pielstick.com
Wartsila http://www.wartsila.com
HAUT DE PAGE
Groupement des industries du groupe électrogène (Gigrel) http://www.gimelec.fr
HAUT DE PAGECet article fait partie de l’offre
Réseaux électriques et applications
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive