Présentation
EnglishAuteur(s)
-
Catherine FILLET : Direction de l'énergie nucléaire, centre de Saclay, CEA
-
Nicolas DACHEUX : Professeur - Institut de chimie séparative de Marcoule (ICSM), Université Montpellier 2
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Dès la fin des années 1950, des solutions (phases minérales, verres) pour confiner les déchets ultimes de haute activité et à vie longue issus des opérations de traitement des combustibles nucléaires ont été envisagées. La vitrification de ces déchets de haute activité s'est imposée au niveau international dans les années 1980 et reste actuellement la solution de référence pour le conditionnement des déchets de haute activité en raison de la qualité de confinement et des performances de ce type de matrice (voir [BN 3 664]). Le choix de cette technologie repose sur :
-
la capacité du verre à incorporer les éléments de la solution de produits de fission (environ trente éléments) ;
-
la production de verre en grande quantité par fusion à des températures raisonnables (environ 1 100 oC) ;
-
l'absence d'impact fort des dégâts d'irradiation produits par les désintégrations des radionucléides incorporés au sein du réseau vitreux sur les propriétés du verre.
En France, les recherches menées dans le cadre de la loi Bataille (loi du 30 décembre 1991 relative à la gestion des déchets nucléaires) ont inscrit le confinement de certains radionucléides de longue période au sein de matrices céramiques spécifiques dans un schéma de séparation poussée/conditionnement des radionucléides à vie longue, alternatif à la voie de référence séparation poussée/ transmutation.
Les études réalisées au sein du groupement de laboratoires NOMADE (nouveaux matériaux pour les déchets) associant le CEA, le CNRS, les universités, EDF, Areva NC ont démontré l'intérêt de plusieurs matériaux sur la base de plusieurs propriétés physico-chimiques d'intérêt . Parmi ces propriétés, on peut citer une capacité d'incorporation importante, une capacité de densification , une bonne résistance à l'altération aqueuse notamment à travers les phénomènes de dissolution et à l'irradiation .
À l'issue de la loi de 1991, la nouvelle loi du 28 juin 2006 sur la gestion des déchets nucléaires a réaffirmé la stratégie de séparation poussée des seuls actinides mineurs et leur transmutation dans des réacteurs de 4e génération (voir [BN 3 663]). Les études sur le développement des matrices de conditionnement spécifique ont donc été mises en veille à l'exception de celles relatives au confinement de l'iode dans une stratégie de construction, notamment à l'export, d'usines de traitement de combustibles sur des sites éloignés de la mer. Ces études sont cependant riches d'enseignement dans les domaines de la chimie et du comportement des matériaux.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Verres et céramiques > Céramiques : applications > Matrices céramiques pour conditionnements spécifiques > Formulation de céramiques pour le conditionnement de déchets
Cet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Formulation de céramiques pour le conditionnement de déchets
Dans les années 1970, des chercheurs de l'université de Pennsylvanie (États-Unis) ont mis au point des matrices céramiques pour le conditionnement des solutions de produits de fission à base de phases cristallines de type silicate, phosphate et molybdate ayant pour caractéristique principale de présenter des analogues naturels réputés comme étant durables. Ces céramiques synthétisées sous air à 1 100 oC présentaient des taux d'incorporation élevés en déchets (de l'ordre de 70 % en masse).
Les principales phases cristallines constitutives de cet assemblage étaient la pollucite (CsAlSiO4), la powellite (CaMoO4), des apatites et des monazites renfermant des ions terre rare .
Dans la même période, en Australie, Ringwood et al. ont développé une matrice céramique à base d'ions titanate, appelée Synroc (pour « Synthetic Rock »), permettant d'assurer un taux d'incorporation en déchets radioactifs pouvant atteindre 20 % en masse. Le procédé d'élaboration d'un tel matériau consistait en :
-
un mélange du déchet avec les précurseurs de titane, d'aluminium, de baryum, de calcium et de zirconium sous forme d'oxydes ;
-
une calcination du mélange à 750 oC dans des conditions réductrices ;
-
un frittage sous charge à une température opérationnelle de 1 100 oC de manière à obtenir une céramique dense constituée de hollandite Ba(Al, Ti)2Ti6O16 , assurant le confinement du césium et du rubidium, de zirconolite CaZrTi2O7 , phase renfermant les ions terre rare et les actinides, de perovskite CaTiO3 , assurant le confinement du strontium, des ions terre rare et des actinides,...
Cet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Formulation de céramiques pour le conditionnement de déchets
BIBLIOGRAPHIE
-
(1) - McCARTHY (G.J.) - * - Nucl. Tech., 32, p. 92 (1977).
-
(2) - RINGWOOD (A.E.) et al - Radioactive waste forms for the future. - Eds LUTZE (W.) (1988).
-
(3) - DACHEUX (N.), CLAVIER (N.), ROBISSON (A.C.), TERRA (O.), AUDUBERT (F.), LARTIGUE (J.E.), GUY (C.) - * - CR Acad. Sc. Paris, 7, p. 1141-1152 (2004).
-
(4) - TERRA (O.), DACHEUX (N.), AUDUBERT (F.), PODOR (R.) - * - J. Nucl. Mater., 352, p. 224-232 (2006).
-
(5) - POITRASSON (F.), OELKERS (E.H.), SCHOTT (J.), MONTEL (J.M.) - * - Geochim. Cosmochim. Acta., 68, p. 2207-2221 (2004).
-
(6) - MELDRUM (A.), BOATNER (L.A.), WEBER (W.J.), EWING (R.C.) - * - Geochim. Cosmochim. Acta., 62, p. 2509-2520 (1998).
-
...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive