Présentation

Article

1 - ÉTUDE ÉLECTROMAGNÉTIQUE DES SUPRACONDUCTEURS, MODÈLE DE L’ÉTAT CRITIQUE

2 - AIMANTATION D’UN SUPRACONDUCTEUR AVEC DENSITÉ DE COURANT CRITIQUE

3 - STABILISATION DE L’ÉTAT SUPRACONDUCTEUR

4 - PERTES ALTERNATIVES (PERTES AC)

5 - TRANSITION ET PROTECTION

Article de référence | Réf : D2702 v1

Transition et protection
Supraconducteurs - Structure et comportement des fils

Auteur(s) : Pascal TIXADOR, Yves BRUNET

Date de publication : 10 févr. 2004

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Le matériau supraconducteur a la propriété, dans des conditions données de température et de densité de courant, de transporter du courant sans dissipation énergétique. Cet article s'intéresse au supraconducteur avec une structure multifilamentaire torsadée, qui stabilisé l'état supraconducteur et offre un fonctionnement sûr et satisfaisant.  Il explique l'origine des pertes en courant alternatif, puis aborde la transition et la protection du fil supraconducteur dans un dispositif supraconducteur.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Pascal TIXADOR : Directeur de recherche au CNRS - Laboratoire d’électrotechnique de Grenoble (LEG) - Centre de recherche sur les très basses températures (CRTBT)

  • Yves BRUNET : Professeur à l’Institut national polytechnique de Grenoble (INPG) - Laboratoire d’électrotechnique de Grenoble (LEG) - Centre de recherche sur les très basses températures (CRTBT)

INTRODUCTION

Un supraconducteur est le matériau a priori idéal pour l’électrotechnicien puisqu’il transporte des densités de courant élevées sans être dissipatif du tout, du moins quand son environnement électromagnétique reste constant dans le temps. Cet état non dissipatif est cependant limité par trois grandeurs : la température critique (Tc ), la densité de courant critique (Jc ) et le champ d’irréversibilité (H*). Ces trois grandeurs forment une surface, dite critique, dans l’espace, température, densité de courant et champ magnétique. Elle peut être modifiée par les contraintes mécaniques pour certains supraconducteurs. La limite thermique est la plus contraignante pour l’utilisateur, du moins pour les supraconducteurs à basse température critique qui restent de très loin les matériaux les plus utilisés. Ainsi ce document traite essentiellement de la structure multifilamentaire des fils supraconducteurs « bas Tc ». Les supraconducteurs à haute température critique sont cependant souvent évoqués. L’élévation de la température de fonctionnement et les conséquences sur les grandeurs caractéristiques sont analysées.

Dans ce document, le supraconducteur est considéré macroscopiquement avec un modèle simple mais représentatif : le modèle de l’état critique et sa version simplifiée, le modèle de Bean, la physique ayant été abordée dans l’article Supraconducteurs. Bases théoriques Supraconducteurs- Bases théoriques.

Après avoir présenté ce modèle, nous l’appliquerons à l’aimantation d’un supraconducteur, une de ses caractéristiques fondamentales. Nous expliquons par la suite comment la structure multifilamentaire torsadée stabilise l’état supraconducteur et permet un fonctionnement sûr et satisfaisant, compte‐tenu des spécificités des supraconducteurs et des propriétés des matériaux aux basses températures. Les pertes en courant alternatif (ac) sont abordées avant de conclure par la transition et la protection du fil supraconducteur dans un dispositif supraconducteur.

Nota :

Cette série est complétée par l’article : Supraconducteurs. Environnement et applications Supraconducteurs- Environnement et applications.

Pour en savoir plus, le lecteur pourra consulter les ouvrages .

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d2702


Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

5. Transition et protection

Même si toute la conception d’un aimant supraconducteur vise à éviter sa transition (quench en anglais), celle‐ci peut intervenir dans la vie de l’aimant (manque d’hélium liquide, choc mécanique important) et il faut s’assurer qu’une transition n’endommage pas l’aimant. Sans système d’extraction de l’énergie, toute l’énergie magnétique de l’aimant est en effet transformée en chaleur et l’élévation de température induite peut être forte, surtout si la transition reste localisée en certains points, appelés points chauds.

Au‐delà de la longueur minimale de propagation, une zone normale se développe et entraîne la transition de la bobine supraconductrice. La zone normale croît sous les effets combinés des pertes Joule et des échanges par conduction le long du conducteur et avec le fluide à la température T 0 . Le front résistif de température T f se propage avec une vitesse (v p). Dans des conditions adiabatiques, son expression est :

Exemple

Pour NbTi à 4 K : J = 1 000 MA/m2 ; T f = 8,25 K ; v p = 40 m/s

Pour YBaCuO à 77 K : J = 1 000 MA /m2 ; T f = 91 K ; v p = 0,5 m/s

Dans les supraconducteurs à haute température critique, les zones normales ne se propagent pratiquement pas et le problème des points chauds locaux peut se poser avec beaucoup d’acuité.

La vitesse de propagation reste en général trop faible pour que l’ensemble du bobinage transite rapidement et que l’énergie magnétique initiale soit donc absorbée par tout le bobinage. Pour accélérer la transition de l’aimant entier, des chaufferettes en bon contact thermique avec le conducteur, sont parfois déclenchées dès qu’une transition est détectée.

L’équation [8] donne, dans des conditions adiabatiques défavorables, la température maximale du point où a démarré la transition, appelé...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Transition et protection
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BEAN (C.P.) -   Magnetization of high field superconductors  -  . Reviews of modern physics, p. 31-39, janv. 1964.

  • (2) - STAVREV (S.), GRILLI (F.), DUTOIT (B.), NIBBIO (N.), VINOT (E.), KLUTSCH (I.), MEUNIER (G.), TIXADOR (P.), YANG (Y.), MARTINEZ (E.) -   Comparison of Numerical Methods for Modelling of superconductors  -  . IEEE Transactions on Magnetics, p. 849-852 (2002).

  • (3) - CLAUDET (G.), LACAZE (A.), ROUBEAU (P.), VERDIER (J.) -   The design and operation of a refrigerator system using superfluid helium  -  . Proceeding of the fifth International Cryogenic Engineering Conference, p. 265-267 (1974).

  • (4) - STEKLY (Z.J.J.), ZAR (J.L.) -   Stable superconducting coils  -  . IEEE Transactions on Nuclear Science, vol. 12, p. 367-372 (1967).

  • (5) - MADDOCK (B.J.), JAMES (G.B.), NORRIS (W.T.) -   Superconducting composites : heat transfer and steady state stabilization.  -  Cryogenics, vol. 9, p. 261-273 (1969).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS