Présentation

Article

1 - TECHNIQUES DE PRODUCTION DES PLASMAS THERMIQUES

2 - PLASMAS RF

3 - ARCS À COURANT CONTINU

  • 3.1 - Remarques générales
  • 3.2 - Cathodes
  • 3.3 - Anodes

4 - ARCS SOUFFLÉS

5 - ARCS TRANSFÉRÉS

6 - ÉQUIPEMENTS AUXILIAIRES

7 - CONTRÔLE DES NUISANCES

8 - CONCLUSION

Article de référence | Réf : D2820 v2

Arcs soufflés
Plasmas thermiques : production

Auteur(s) : Pierre FAUCHAIS

Date de publication : 10 août 2007

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Pierre FAUCHAIS : Professeur - SPCTS (Science des procédés céramiques et des traitements de surface) - CNRS UMR 6638 - Université de Limoges-Faculté des sciences

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Les plasmas thermiques (cf. dossier ), à la pression atmosphérique ou à son voisinage (c’est-à-dire de 10 à 500 kPa), peuvent être produits à des puissances comprises entre quelques centaines de watts, par exemple pour le micro-découpage, et un peu plus d’une centaine de megawatts pour les fours métallurgiques à courant continu. Ils couvrent donc un très large domaine d’applications : découpage ou soudage des pièces métalliques, traitements de surface et dépôts, métallurgie extractive, refusion-purification des métaux, sphéroïdisation et purification des particules, analyse chimique, chauffage des répartiteurs de coulée, chimie, synthèse de poudres nanométriques ou ultrafines, fabrication des pièces de forme, traitement des déchets.

Dans cette présentation nous vous proposons de décrire les différents types de torches utilisées industriellement dans les applications citées.

Pour de plus amples renseignements sur les plasmas thermiques, et en particulier sur la théorie des plasmas, le lecteur est invité à consulter dans cette base de données, et du même auteur, la référence de la bibliographie : Plasmas thermiques : aspects fondamentaux.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-d2820


Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Arcs soufflés

4.1 Principes

La cathode chaude (figure 6 a ), de type tige, a une extrémité conique afin de centrer le pied d’arc sur celle-ci (zone la plus chaude) et le gaz plasmagène est introduit autour de la cathode, soit axialement soit en vortex [11] [18]. La polarité ne peut être inversée sous peine de destruction rapide de la cathode. En effet, la cathode en tungstène est chauffée par les ions venant du plasma, mais elle est aussi refroidie (près de 95 % de l’énergie apportée par les ions) par l’émission des électrons. Lorsque la polarité s’inverse, il n’y a plus de refroidissement par émission des électrons. Si, par exemple, l’alimentation se fait en courant alternatif, la cathode, déjà portée à 3 800 K pour émettre les électrons, va recevoir le flux anodique lors de l’inversion de polarité et être fortement surchauffée. Sa destruction est donc rapide, sauf conception spéciale.

Dans le cas de la cathode froide en forme de puits (figure 6 b ), le gaz doit être introduit en vortex avec une vorticité importante ( S > 8 à 10) et, dès que la puissance dépasse 100 à 200 kW, un champ magnétique doit également aider au déplacement de l’arc à la cathode car l’effet vortex n’est pas très efficace dans le puits. La vorticité S de la torche est définie par l’expression suivante :

S= 1 3 ( 1 z 3 1 z 2 )×1,5tanθ ( 1 )

avec :

z
 : 
d D
d
 : 
diamètre...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Arcs soufflés
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - FAUCHAIS (P.) -   Plasmas thermiques : aspects fondamentaux.  -  [D 2 810]. Base documentaire « Convertisseurs et machines électriques » (2005).

  • (2) - PATEYRON (B.) -   *  -  Software of thermodynamic and transport properties (ADEP data). http://ttwinner.free.fr

  • (3) - ECKERT(H.U.) -   The induction arc: a state of the art review.  -  High Temp., 6, p. 99 à 134 (1974).

  • (4) - BOULOS (M.I.) -   The inductively coupled R.F. plasma.  -  Pure and Appl. Chem. 57, p. 1321-1352 (1985).

  • (5) - BOULOS (M.I.) -   Radio-frequency plasma developments, scale-up and industrial applications.  -  J. High Temp. Chem. Proc., 1, p. 401-411 (1992).

  • (6) - BOULOS (M.I.) -   The inductively coupled radio frequency plasma.  -  J. High Temp. Mat. Proc., 1, p. 17-39 (1997).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS