Présentation
En anglaisAuteur(s)
-
Michel COULON : Directeur de la Recherche et de la Technologie
-
Conrad REYNVAAN : Directeur Technique du Département Applications Électriques
-
Jacques MAIRE : Directeur Scientifique en retraite
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Directeurs à la société Le Carbone-Lorraine
L’élément carbone, du fait de ses propriétés, est le constituant essentiel ou unique de toute une série de matériaux aux applications diverses.
Cet article [D 2 660] est consacré, exclusivement, aux applications en électrotechnique, qui ne représentent qu’une partie de son utilisation. Après avoir rappelé les propriétés générales des carbones et des graphites 1, décrit certains procédés de fabrication traditionnels et les nouveaux produits, nous abordons les applications avec passage de courant électrique :
-
électrodes (§ 2.1 et 2.3), en particulier dans les piles électriques, pour lesquelles on utilise l’inertie chimique du carbone ;
-
charbons d’arc électrique 2.2 où l’on fait appel à la réfractarité et à la faible résistivité du graphite ;
-
effet Joule 2.4 où l’on joue sur un assez large domaine de résistivité des matériaux carbonés ;
-
contacts électriques, fixes ou glissants 3, dans lesquels, outre la réfractarité, c’est l’insoudabilité du carbone qui le rend indispensable, en particulier dans les balais pour moteurs électriques, principales applications en électrotechnique.
Pour plus de détails concernant les généralités et les autres applications du carbone, on pourra consulter les ouvrages et revues cités en [Doc. D 2 660], aux références [1] à [8], ainsi que les abstracts des congrès Carbone qui ont lieu tous les ans dans le monde (États-Unis, Europe et Japon). Concernant les contacts électriques et les balais, on consultera les comptes rendus des conférences internationales et des « Holm conférences ».
L’avenir réserve encore de beaux jours au carbone et à ses composés d’intercalation, en particulier en ce qui concerne les molécules de carbone sphériques récemment découvertes : les fullerènes, dont les propriétés sont encore assez mal connues (supraconductivité, lubrification, stockage de l’énergie).
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Électrodes, charbons d’arc et résistances
2.1 Utilisation en électrochimie
En électrochimie, le carbone et/ou le graphite sont utilisés pour leur inertie chimique et leur faible polarisation.
HAUT DE PAGE
L’électrolyse peut se faire à froid (K, Na, Cl2 , F2 ...) ou à haute température (électrolyse ignée : Al, Mg, Ce, Na).
-
Les électrodes de carbone utilisées pour l’électrolyse de l’aluminium font appel à la faible résistivité du carbone, à sa bonne oxydabilité à haute température, à son inertie chimique vis‐à‐vis de l’aluminium liquide [7].
-
De même, les électrodes des fours à arc d’aciérie font appel aux très bonnes conductivités thermique et électrique du graphite, à sa réfractarité et à son faible coefficient de dilatation.
-
Il convient de mentionner également l’usage du graphite pour la confection d’électrodes d’usinage par électrochimie [22].
Cette méthode est utilisée pour usiner des matériaux conducteurs très difficilement usinables par les méthodes classiques et pour fabriquer des pièces difficiles.
2.1.2 Protection contre la corrosion
Les métaux enterrés dans le sol sont sujets à des corrosions électrochimiques qui peuvent les détruire rapidement et causer des dommages importants aux installations permanentes comportant des tuyauteries, des fondations métalliques ou dans les forages. Dans tous les cas, le métal se comporte comme une anode.
Pour éviter la corrosion, il suffit de mettre, à proximité de l’élément d’installation à protéger, une électrode chargée plus positivement que lui, qui le transforme alors en cathode ne se corrodant donc plus. Cela peut se faire en insérant régulièrement dans le sol, suffisamment près des conduites enterrées, des anodes métalliques ou de graphite alimentées en courant...
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Électrodes, charbons d’arc et résistances
BIBLIOGRAPHIE
-
(1) - Les carbones - . Groupe Français d’Étude des Carbones. Masson & Cie (1965).
-
(2) - WALKER (Ph.L.), THROWER (P.A.) - Chemistry and physics of carbon. - 23 tomes déjà publiés. Marcel Dekker (1965).
-
(3) - * - CARBON. Pergamon Press. Revue internationale publiée depuis (1963).
-
(4) - * - Proceedings of the Carbon Conferences 1953-1955 Buffalo (USA). Abstracts Pergamon Press par les différentes universités américaines (1957-1993).
-
(5) - * - Abstracts of the other European conferences : G.B (London) 1957-1965-1970-1974-1978-1980-1986-1992 publiés par Society of Chemical Industry ; RFA 1972-1976-1982-1988 publiés par Deutsche Keramische Gesellschaft ; F 1960-1968-1976-1984-1990. Groupe Français d’Étude des Carbones édités par le Journal de Chimie-Physique.
-
(6) - * - Japon...
ANNEXES
1 Dans les Techniques de l’Ingénieur
###
Traité Matériaux non métalliques
TI 1. DUMAS (D.), PARISOT (C.) et BUSCAILHON (A.) - Carbones et graphites - . A 7 400. 11.1984. (supprimé en mai 1996).
Traité Génie mécanique
TI 2. CORNUAULT (P.) - Modérateurs en graphite - . B 3 680. 1981. (supprimé en mai 1996).
TI 3. CUNTZ (J.-M.), PELLEREAU (H.) et CORDIER (F.) - Usinage chimique - . B 7 260. 1994.
TI 4. KREMER (D.) - Usinages par électroérosion - . BM 7 251. 2000.
TI 5. CAZES (R.) - Soudage par résistance - . B 7 720. 1993.
Traité Génie électrique
TI 6. BRENET (J.) - Piles électriques - . D 3 900. 1987. (supprimé en février 2002).
TI 7. STEVENS (P.), LAMY (C.), CASSIR (M.), NOVEL-CATTIN (F.) et HAMMOU (A.) - Piles à combustible - . D 3 340. 2000.
TI 8. FÉCHANT (L.) - Appareillage électrique à basse tension - . D 4 860 à D 4 868. 1984 à 1986.
TI 9. VACQUIÉ (S.) - Arc électrique - . D 2 870. 1995.
TI 10. BERNOT (F.) - Moteurs à courant continu. Constitution et fonctionnement - . D 3 555. 1999.
HAUT DE PAGECet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive