Présentation
EnglishRÉSUMÉ
Le besoin de grands accélérateurs très performants et plus économes en énergie a conduit à multiplier l'utilisation de matériaux supraconducteurs, notamment pour la fabrication des cavités radiofréquences destinées à accélérer les particules chargées. Nous décrivons ici les spécificités de l'accélération de particules chargés par des cavités radiofréquences supraconductrices : rappel sur l'accélération des particules chargées, performances et limites des cavités supraconductrices, environnement spécifique.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Claire ANTOINE : Ingénieure-chercheuse à l'Institut de recherche sur les lois fondamentales de l'Univers - CEA-Saclay
-
Juliette PLOUIN : Ingénieure-chercheuse à l'Institut de recherche sur les lois fondamentales de l'Univers - CEA-Saclay
INTRODUCTION
L'utilisation de cavités supraconductrices a permis d'améliorer les performances des accélérateurs de particules. On retrouve cette technologie en recherche fondamentale et appliquée, mais aussi dans le domaine médical et industriel : grands accélérateurs pour la physique nucléaire et des particules, sources de lumière synchrotron ou lasers à électrons libres, sources de protons et de neutrons. Des applications sociétales importantes (par exemple l'hadronthérapie, la transmutation des déchets nucléaires…) sont en cours de développement.
Un accélérateur est principalement constitué :
-
d'un injecteur. Il s'agit d'une source de particules chargées (électrons protons, ions) et mise en forme du faisceau ;
-
d'éléments capables de produire un champ magnétique pour dévier et/ou focaliser la trajectoire des particules ;
-
d'éléments capables de générer un champ électrique pour accélérer les particules.
La supraconductivité est de plus en plus utilisée aussi bien pour la fabrication des électroaimants utilisés pour dévier les faisceaux [D 590] que pour la fabrication des cavités radiofréquences (RF) qui génèrent les champs électriques nécessaires à l'accélération des particules. En effet, l'usage de matériaux supraconducteurs permet de diminuer considérablement les dissipations thermiques dues à l'effet Joule. Dans de nombreuses applications, le gain en rendement et/ou sur la taille de la machine l'emporte considérablement sur les investissements supplémentaires liés à la fabrication d'installations cryogéniques. Contrairement aux cavités en cuivre, les cavités supraconductrices peuvent fonctionner en champ radiofréquence continu et avec des champs accélérateurs élevés.
La conception d'un accélérateur dépend des applications souhaitées ; il y a deux grandes catégories d'accélérateurs. Dans les machines circulaires, le faisceau repasse plusieurs fois dans les éléments accélérateurs. Dans ce cas les points critiques sont essentiellement les champs magnétiques intenses nécessaires pour dévier le faisceau et les dissipations dans les parois des cavités radiofréquences. Au contraire, dans les accélérateurs linéaires, où le faisceau ne passe qu'une fois, le point critique est le champ accélérateur qui doit être maximum.
Nous nous focaliserons ici sur les cavités radiofréquences et sur l'apport des matériaux supraconducteurs dans cette technologie.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(270 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Supraconductivité pour les cavités radiofréquences
Les cavités classiques (en cuivre) ou supraconductrices fonctionnent selon le même principe ; mais les dissipations thermiques et les conditions de fonctionnement sont très différentes. Les cavités supraconductrices sont principalement fabriquées en niobium – massif ou en dépôt sur du cuivre – comme nous le verrons dans la suite de l'article.
3.1 Supraconducteurs en radiofréquence : résistance non nulle !
La résistance du niobium supraconducteur est nulle pour un champ électrique continu, mais pas en présence d'un champ radiofréquence ; cependant elle est divisée d'un facteur de l'ordre de 100 000 par rapport à celle du cuivre à température ambiante. C'est cette diminution énorme de la résistance de surface qui justifie l'utilisation privilégiée du niobium supraconducteur plutôt que celle du cuivre dans de nombreux accélérateurs de particules.
En effet, à cause de leur grande résistance de surface, les cavités cuivre doivent être alimentées par un champ pulsé au-delà d'une certaine puissance, de manière à laisser le matériau refroidir. Au contraire, les cavités supraconductrices peuvent fonctionner avec un champ accélérateur conséquent à cycle utile élevé, c'est-à-dire en injectant le faisceau et la puissance radiofréquence avec des impulsions longues, voire en continu.
Le rendement des cavités niobium est bien meilleur puisque les dissipations thermiques dans les parois sont plus faibles, si bien que pratiquement toute la puissance injectée dans la cavité est transmise au faisceau. Au contraire, dans les cavités cuivre, une grande partie de la puissance injectée est perdue par échauffement, le rendement est faible, et il faut des sources de puissance radiofréquence très puissantes pour alimenter les cavités.
Par contre les cavités niobium doivent être maintenues à très basse température (autour de 4 K dans l'hélium liquide et de 2 K dans l'hélium superfluide), et les dissipations thermiques à la surface interne de la cavité entraînent des pertes cryogéniques, c'est-à-dire une surconsommation d'hélium. Ainsi, la consommation électrique pour fournir la puissance cryogénique compense en partie l'énorme avantage en matière de rendement.
Les cavités niobium sont également plus sensibles aux phénomènes parasites tels que l'émission de champ et les états de surface...
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(270 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Supraconductivité pour les cavités radiofréquences
BIBLIOGRAPHIE
-
(1) - HOLTKAMP (N.) - Status of the SNS project. - In Proceedings of the Particle Accelerator Conference. Oak Ridge, TN, USA : IEEE (2003).
-
(2) - OLRY (G.) et al - Recent developments on superconducting beta 0.35 and beta 0.15 spoke cavities at IPN for low and medium energy sections of proton linear accelerators. - In Proceedings of the EPAC (2004).
-
(3) - ORSINI (F.) et al - Progress on the SRF linac developments for the IFMIF-LIPAC project. - IPAC (2013).
-
(4) - BERNAUDIN (P.) et al - Design of the low-beta, quarter-wave resonator and its cryomodule for the SPIRAL2 project. - In EPAC (2004).
-
(5) - BRINKMANN (R.) et al - TESLA technical design report part II : the accelerator. - DESY-01-011B (2001).
-
(6) - DEVANZ (G.) - Cryomodules with elliptical cavities for ESS. - In...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Le site « Joint Accelerator Conferences Website » publie l'ensemble des conférences sur les accélérateurs de particules. Parmi les proceedings de conférences archivés sur ce site, les conférences SRF (International Conférence on RF Superconductivity) y sont rassemblées depuis la première édition en 1980. On y trouve tous les détails sur la rechercher et développement et les progrès récents sur les cavités supraconductrices et leur environement https://www.jacow.org/
Laser à électrons libre XFEL http://www.xfel.eu
HAUT DE PAGECet article fait partie de l’offre
Conversion de l'énergie électrique
(270 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive