Présentation

Article

1 - GÉNÉRALITÉS

  • 1.1 - Objectifs
  • 1.2 - Température, chaleur
  • 1.3 - Modes de transfert thermique
  • 1.4 - Résistance thermique

2 - CONDUCTION

  • 2.1 - Conduction dans les solides
  • 2.2 - Conduction dans les liquides
  • 2.3 - Conduction dans les gaz

3 - CONVECTION

  • 3.1 - Convection monophasique
  • 3.2 - Convection diphasique

4 - RAYONNEMENT

  • 4.1 - Définitions
  • 4.2 - Rayonnement du corps noir : loi du rayonnement
  • 4.3 - Émission des corps réels
  • 4.4 - Réception du rayonnement par un corps
  • 4.5 - Échange radiatif entre deux surfaces noires : facteur de forme
  • 4.6 - Échange radiatif entre deux surfaces grises
  • 4.7 - Importance et réduction du flux radiatif

5 - COMPARAISON DES DIFFÉRENTS MODES DE TRANSFERT THERMIQUE

Article de référence | Réf : BE9812 v1

Généralités
Transfert de chaleur à basse température

Auteur(s) : Bertrand BAUDOUY, Gérard DEFRESNE, Patxi DUTHIL, Jean-Pierre THERMEAU

Relu et validé le 28 oct. 2019

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Garantir un environnement cryogénique, c'est d'une part limiter les apports de chaleur provenant de toute source dont le milieu ambiant et d'autre part assurer un échange thermique efficace nécessaire à l'évacuation de la chaleur. Cet article présente les spécificités qu'implique le domaine des basses températures dans la compréhension et l'estimation des transferts thermiques en cryogénie. Conduction, convection et rayonnement sont ainsi traités en considérant les deux objectifs complémentaires de réduction ou de promotion des échanges. Des exemples pratiques soutiennent les données techniques et chiffrées.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Heat transfers at low temperature

Ensuring a cryogenic environment means first limiting heat loads from any source including the ambient environment. Second, it means ensuring an efficient heat exchange, which is necessary to remove heat. This article presents those characteristics of the low temperature domain that are needed for the understanding and estimation of heat transfer in cryogenics. Conduction, convection and radiation are examined in the light of the two complementary objectives of reducing and promoting heat exchanges. Practical examples are given to illustrate technical data.

Auteur(s)

  • Bertrand BAUDOUY : Docteur, Ingénieur-chercheur au Commissariat à l'Énergie Atomique et aux énergies alternatives (CEA) de Saclay au sein du Service des accélérateurs, de cryogénie et de magnétisme, France

  • Gérard DEFRESNE : Professeur agrégé, chargé de cours à l'Institut universitaire de technologie d'Orsay (Université de Paris Sud), membre du Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), France

  • Patxi DUTHIL : Docteur, Ingénieur de recherche du Centre National de la Recherche Scientifique (CNRS) au sein de l'Institut de Physique Nucléaire d'Orsay, France

  • Jean-Pierre THERMEAU : Ingénieur de recherche du Centre National de la Recherche Scientifique (CNRS) au sein de l'Institut de Physique Nucléaire d'Orsay, France

INTRODUCTION

Abasse température, on retrouve les trois types de transfert de chaleur (conduction, convection, rayonnement). Par contre, leur intensité est très différente de celle observée à température ambiante. Plusieurs paramètres expliquent cette différence. Les caractéristiques physiques des matériaux et des fluides varient de plusieurs ordres de grandeur entre la température ambiante et les basses températures. De plus, la plupart des variations de ces caractéristiques n'évoluent pas proportionnellement à la température. Cette évolution non linéaire des caractéristiques des fluides et des matériaux à basses températures complique l'évaluation des différents flux de chaleur échangés. Il est donc indispensable de connaître le comportement des matériaux et des fluides pour réaliser le bilan thermique d'un cryosystème.

De nombreuses installations industrielles et scientifiques fonctionnent à basse température et ont confirmé la validité des relations utilisées pour le dimensionnement thermique d'équipements dans ce domaine. L'apparition de nouveaux matériaux pour la construction (composites ayant une faible conductivité thermique) ou pour l'isolation (feuilles de superisolation) ont permis d'améliorer les performances thermique et thermodynamique des cryosystèmes. L'amélioration des performances énergétiques des cryosystèmes et des aimants supraconducteurs s'est accompagnée d'un développement important de certains équipements cryogéniques comme, par exemple, ceux utilisés pour l'imagerie médicale.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

heat intercepts   |   thermal shields   |   convection   |   heat transfers   |   thermal insulation

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-be9812


Cet article fait partie de l’offre

Froid industriel

(49 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

1. Généralités

1.1 Objectifs

La mise en froid et le maintien à basse température d'un système nécessitent l'utilisation d'un dispositif thermodynamique fonctionnant en mode réfrigérateur sur le principe d'une pompe à chaleur : la consommation d'un travail W (en Joule) permet le transfert d'une certaine quantité de chaleur Q (en Joule) d'une source froide à la température TF vers une source chaude à la température TC   .

L'application des premier et second principes de la thermodynamique donne alors la relation entre travail et chaleur :

( 1 )

avec :

COP
 : 
coefficient opérationnel de performance du dispositif frigorifique.

On note que l'égalité stricte est vraie seulement pour une machine thermodynamique réversible (et idéale) dite de Carnot. Ainsi, il apparaît que plus la température de la source froide est petite plus le travail nécessaire à l'extraction de la chaleur de cette source est important. Autrement dit, plus un système fonctionne à basse température, plus il coûte cher de le maintenir à cette température.

Toute chaleur apportée à la source froide et provenant de la source chaude augmente la quantité Q à extraire, donc le travail à fournir et ainsi le coût de fonctionnement. De plus, à basse température, l'enthalpie latente de vaporisation des liquides cryogéniques est faible et la capacité calorifique des matériaux tend vers zéro lorsque la température tend vers zéro. Une conséquence immédiate est que tout apport de chaleur va entraîner une évaporation des liquides et des réchauffements importants des matériaux. Un premier objectif est donc de fournir au système une isolation thermique efficace permettant de réduire cet apport.

Par ailleurs, pour que le système soit maintenu à la température TF et la chaleur extraite de celui-ci par échange thermique, il faut en réalité que la température froide du dispositif frigorifique soit légèrement plus faible, TF  – δT. Cette différence de température...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Froid industriel

(49 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Généralités
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - VAN SCIVER (S.W.) -   Developments in He II heat transfert and applications to superconducting magnets.  -  Fast RW, editor, Plenum Press, 27, p. 375-398 (1982).

  • (2) - KAPITZA (P.L.) -   The study of heat transfer on He II.  -  USSR Journal of Physics, p. 4181 (1941).

  • (3) - POLLACK (G.L.) -   Kapitza resistance.  -  Reviews of Modern Physics, 41(1), p. 48 (1969).

  • (4) - VAN SCIVER (S.W.) -   Helium cryogenics.  -  Plenum Press (1986).

  • (5) - AMRIT (J.), FRANÇOIS (M.X.) -   Heat flow at the niobium-superfluid helium interface : Kapitza resistance and superconducting cavities.  -  J. Low. Temp. Phys., 119(1-2), p. 27-40 (2000).

  • (6) - KASHANI (A.), SCIVER (S.W.V.) -   High heat flux Kapitza conductance of technical copper with several different surface preparations.  -  ...

DANS NOS BASES DOCUMENTAIRES

  • Propriétés des matériaux à basse température.

1 Outils logiciels

CryoComp © Eckels Engineering Inc. 1993-2012. Base de données des propriétés thermiques et électriques des matériaux. Logiciel distribué en France par Cryoforum http://www.cryoforum.com

HAUT DE PAGE

2 Événements

Cryogenic Engineering Conference (bisannuelle en alternance avec ICEC)

International Cryogenic Engineering Conference (bisannuelle en alternance avec CEC)

HAUT DE PAGE

3 Annuaire

CEA http://www.cea.fr

Air Liquide http://www.airliquide.com

Institut Néel http://neel.cnrs.fr/

AFF-CCS http://affccs.grenoble.cnrs.fr

CERN http://home.web.cern.ch/fr

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Froid industriel

(49 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS