Présentation
EnglishRÉSUMÉ
Les systèmes de réfrigération magnétique autour de la température ambiante sont une solution alternative à la réfrigération par gaz compressé. Ces appareils ont atteint le stade de l'industrialisation, préalable à une prochaine mise sur le marché pour des puissances aujourd'hui limitées. La réfrigération, basée sur la compression/détente, est confrontée à des environnements contraignants sans véritable solution alternative, alors que le froid magnétique peut apporter des solutions crédibles au remplacement des compresseurs. Après un rappel du contexte et de l'effet magnétocalorique, l'article se focalise sur les spécifications marchés, les contraintes d'industrialisation et de coûts, et les prototypes rotatifs industrialisés et leurs composants. Des perspectives d'évolution vers des puissances plus élevées sont avancées.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Christian MULLER : Directeur de recherche dans le domaine du froid magnétique - Président de la société Cooltech Applications
-
Guillaume BRUMPTER : Ingénieur conception en systèmes de froid magnétique - Ingénieur en mécanique de l'ENIM,Cooltech Applications
-
Lhassan ELOUAD : Docteur en sciences - Ingénieur de recherches pour les sciences fondamentales - Ingénieur essais, Cooltech Applications
-
Jean-Baptiste POLMARD : Ingénieur en mécanique énergie – UHP Nancy 1 - Ingénieur de recherches - Ingénieur essais, Cooltech Applications
INTRODUCTION
Le domaine de la réfrigération et de la climatisation recouvre des secteurs d'applications larges, multiples et diversifiés (tant industriels que grand public). C'est également un marché fortement porteur, en progression régulière de 2 à 4 % par an.
Le froid, nécessaire à l'économie et à la société moderne pour l'alimentation, la santé et le confort (réfrigération, climatisation…) est majoritairement produit par des systèmes basés sur le principe thermodynamique classique de compression et de détente d'un fluide.
Cette technologie, datant des années 1880, est mature et bien maîtrisée. Elle est régulièrement confrontée à un environnement réglementaire et sociétal qui devient très contraignant. (voir articles [BE 9 720] et [BE 9 723]).
Le froid magnétique peut apporter des réponses crédibles aux industriels et utilisateurs en recherche de solutions alternatives aux systèmes de compression de gaz (compresseurs à gaz actuels).
Les systèmes de réfrigération magnétique autour de la température ambiante ont atteint le stade du développement industriel.
1881. Découverte par Warburg de l'effet magnétocalorique. Propriétés des matériaux = variation de température sous l'action d'un champ magnétique.
1949. Prix nobel de chimie. Reconnaissance scientifique = élargissement et intérêt accru pour des travaux de recherche.
1980. Preuve du concept. Écarts de température (spans) importants et mesurés de plus de 45 oC avec du gadolinium en utilisant des aimants supraconducteurs (B > 7 T).
1994. Progression des performances des aimants permanents de type NdFeB (Néodyme Fer Bore) permettant des applications industrielles et des innovations importantes dans le froid magnétique (par exemple : B > 1,2 T avec des aimants standard).
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Froid industriel
(49 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Effet magnétocalorique
L'effet magnétocalorique EMC se traduit par l'échauffement puis le refroidissement d'un matériau magnétocalorique successivement aimanté et désaimanté. Il est le résultat du changement de l'entropie du matériau dû aux couplages entre les moments magnétiques et le réseau atomique sous l'action d'un champ magnétique extérieur. Il se mesure par un écart de température ΔT.
L'application d'un champ magnétique permet d'aligner les moments magnétiques créant ainsi une forme d'ordre dans le solide (matériau magnétocalorique).
Ce passage d'un état magnétique désordonné à un état ordonné est accompagné d'une augmentation de l'intensité des vibrations atomiques augmentant la température T dans le matériau.
Pour un matériau ferromagnétique, l'entropie S peut être scindée en trois composantes : l'entropie magnétique, l'entropie de réseau et l'entropie électronique :
Seule l'entropie magnétique dépend de l'intensité du champ magnétique H. La variation de cette dernière permet de quantifier la variation de l'ordre du système de spins et par conséquent l'augmentation de la température lors du processus isotherme du cycle de réfrigération magnétique.
Le spin de l'électron est l'une des propriétés quantiques des particules qui joue un rôle important dans le magnétisme en étant responsable du moment magnétique (de spin).
L'état d'équilibre est caractérisé par un minimum d'énergie qui correspond à une disposition aléatoire des spins.
Un champ magnétique suffisamment fort tend à aligner ces spins, ce qui a pour conséquence d'augmenter « l'ordre » dans le matériau et ainsi de diminuer son...
Cet article fait partie de l’offre
Froid industriel
(49 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Effet magnétocalorique
BIBLIOGRAPHIE
-
(1) - NIELSEN (K.K.), TUSEK (J.), ENGELBRECHT (K.), SCHOPFER (S.), KITANOVSKI (A.), BAHL (C.R.H.), SMITH (A.), PRYDS (N.), POREDOS (A.) - Review on numerical modeling of active magnetic regenerators for room temperature applications. - Int. J. Refrigeration, 34(3), p. 603-616 (2011).
-
(2) - PETERSEN (T.F.), PRYDS (N.), SMITH (A.), HATTEL (J.), SCHMIDT (H.), KNUDSEN (H.-J.H.) - Two-dimensional mathematical model of a reciprocating room-temperature Active Magnetic Regenerator. - Int. J. Refrigeration, DOI:10.1016/j.ijrefrig.2007.07.009 (2007).
-
(3) - BOUCHARD (J.) et al - Model of a porous regenerator used for magnetic refrigeration at room temperature. - Int. J. Heat Mass Transfer, DOI:10.1016/j.ijheat mass transfer, 2008.08.031 (2008).
-
(4) - TAGLIAFICO (G.), SCARPA (F.), CANEPA (F.) - A dynamic 1-D model for a reciprocating active magnetic regenerator : influence of the main working parameters. - Int. J. Refrigeration, 33, p. 286-293 (2010).
-
(5) - ALLAB (F.), KEDOUS-LEBOUC (A.), YONNET (J.P.), FOURNIER (J.M.) - A magnetic field source system for magnetic refrigeration and its...
DANS NOS BASES DOCUMENTAIRES
Flux 3D http://www.cedrat.com/fr/software/flux.html
Fem 4.0 http://www.femm.info/wiki/HomePage
CFX http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+CFX
Comsol http://www.comsol.com/
HAUT DE PAGE
THERMAG : conférence internationale sur le froid magnétique, organisé par l'IIFIIR, a lieu tous les deux ans http://thermagv.grenoble.cnrs.fr
Cold...
Cet article fait partie de l’offre
Froid industriel
(49 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive