Présentation

Article interactif

1 - GAZ

2 - EAU

3 - FLUIDES ORGANIQUES

4 - SELS FONDUS

  • 4.1 - Principaux fluides caloporteurs. Propriétés physico-chimiques
  • 4.2 - Principales applications

5 - MÉTAUX LIQUIDES

6 - NANOFLUIDES

7 - CONCLUSION

8 - GLOSSAIRE – DÉFINITIONS

Article de référence | Réf : BE9571 v2

Métaux liquides
Fluides caloporteurs - Propriétés

Auteur(s) : Christophe MARVILLET

Relu et validé le 28 sept. 2021

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les principaux fluides caloporteurs sont les gaz sous forme d'azote, d'hélium, d'air, de dioxyde de carbone et de vapeur d'eau surchauffée caractérisés par un médiocre pouvoir calovecteur et caloporteur mais valorisables pour des usages à très haute température. Pour des procédés industriels fonctionnant jusqu'à des températures de 350 C, les fluides organiques sous forme d'huile minérale ou synthétique peuvent trouver de larges applications. Les fluides halogénés de type PFC ou HFE trouvent des usages où leur rigidité diélectrique et leur volatilité s'appliquent à des procédés de refroidissement divers. Les usages à plus haute température imposent des fluides caloporteurs de type sels fondus voire métaux liquides dont la mise en oeuvre reste délicate malgré des propriétés physiques particulièrement favorables.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

HEAT TRANSFER FLUIDS - PROPERTIES

The main heat transfer fluids are gases such as nitrogen, helium, air, carbon dioxide and superheated steam. They are characterized by a poor heat carrying and cooling power, but are adaptable to very high temperature. For industrial processes operating at temperatures up to 350 °C, fluids such as mineral or synthetic oil may find wide applications. Halogenated fluids of the PFC or HFE type find uses where dielectric strength and low volatility are applied to cooling in various processes Uses at higher temperature demand heat transfer fluids such as molten salts or liquid metals, whose implementation remains difficult despite their particularly favorable physical properties.

Auteur(s)

  • Christophe MARVILLET : Professeur du CNAM (Conservatoire national des arts et métiers) - IFFI-CNAM (Institut français du froid industriel et du génie climatique), Paris, France

INTRODUCTION

Le rôle d'un fluide caloporteur est d'assurer le transport de la chaleur d'une source thermique à un puits thermique, tout en respectant un certain nombre de contraintes :

  • contraintes techniques telles que la réduction des pertes thermiques ou une faible consommation d'énergie de transport du fluide. Elles sont conditionnées par les propriétés thermodynamiques et thermo-physiques telles que la masse volumique, la capacité thermique ou chaleur latente pour les fluides à changement de phase, la viscosité dynamique... ;

  • contraintes de sécurité et environnementales (en particulier, effet sur la couche d'ozone et contribution à l'effet de serre) et qui prennent une place déterminante dans le choix des fluides. Elles sont conditionnées par des réglementations en constante évolution qui intègrent les critères traditionnels de toxicité, d'inflammabilité, de sécurité pour les personnes et les produits, d'explosivité mais également d'impact sur la couche d'ozone et surtout de contribution à l'effet de serre ;

  • contraintes économiques ; le coût du fluide lui-même, la structure et le coût du réseau de distribution de chaleur, la taille des auxiliaires de pompage, de compression ou de ventilation sont directement déterminés par les propriétés thermodynamiques des fluides. Les échangeurs de chaleur intégrés à ce réseau (notamment aux sources et puits de chaleur) sont partiellement dimensionnés par les propriétés « calovectrices » des fluides telles que la conductivité de ces fluides.

Selon leurs applications, les fluides caloporteurs peuvent être des gaz (azote, hélium...), de l'eau, des fluides organiques, des sels fondus ou des métaux liquides.

Les développements actuels portent sur des fluides, dits nanofluides, dans lesquels sont introduites des nanoparticules qui présentent l'avantage d'accroître de façon significative la conductivité thermique du fluide. Ces développements restent limités au niveau pré industriel mais peuvent constituer à terme une évolution importante de la technologie des fluides thermiques.

Cet article est le second volet traitant des fluides caloporteurs et frigoporteurs. Il est complété par l'article Fluides frigoporteurs – Propriétés [BE 9 572] concernant plus particulièrement les fluides frigoporteurs.

Pour les définitions générales, les critères de choix se reporter à l'article Fluides caloporteurs et frigoporteurs – Définitions. Critères de choix [BE 9 570].

Les noms commerciaux des différents fluides ainsi que leurs fournisseurs sont donnés en [Doc. BE 9 571].

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

gas   |   water   |   nanofluid   |   cooling   |   industrial processes   |   waste heat valorization   |   heat exhangers   |   distric heating

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-be9571


Cet article fait partie de l’offre

Thermique pour l’industrie

(37 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

5. Métaux liquides

5.1 Principaux fluides caloporteurs. Propriétés physico-chimiques

Les métaux liquides actuellement utilisés comme fluides caloporteurs ou ayant au moins fait l'objet d'essais approfondis sont le mercure (Hg), le sodium (Na), les alliages sodium-potassium (Na-K), le lithium (Li), le plomb (Pb) et les alliages plomb-bismuth (Pb-Bi). Leurs températures de fusion et d'ébullition sont indiquées dans le tableau 3.

Leur domaine d'application est compris entre 200 et 700 oC et leur stabilité thermique est parfaite puisque ce sont des corps simples.

La faible capacité thermique massique (de l'ordre de 1 000 J/(kg · K) malgré des masses volumiques élevées génère un pouvoir caloporteur moyen inférieur de 20 à 50 % de celui de l'eau.

Grâce à une très bonne conductivité thermique [de l'ordre de 10 à 100 W/(m · K)], les métaux liquides présentent un pouvoir calovecteur exceptionnel. Toutefois, du fait de viscosités élevées, leur coefficient de performance énergétique (puissance thermique transférée/puissance de pompage) reste inférieur à celui de l'eau.

Les métaux liquides peuvent être corrosifs à haute température :

  • pour le mercure, les aciers au carbone peuvent convenir jusqu'à 400 oC ; au-delà, il est préférable d'utiliser des aciers au chrome ;

  • pour le sodium et les alliages sodium-potassium, les matériaux à privilégier sont les aciers inoxydables 18-8 qui présentent d'excellents comportements jusqu'à 650 oC ;

  • pour le lithium, les aciers inoxydables 18-8 peuvent convenir jusqu'à 500 oC ;

  • pour le plomb et les alliages plomb-bismuth, les aciers au carbone et au chrome conviennent jusqu'à 600 oC.

Les métaux liquides présentent tous des risques d'incendie : le lithium, le sodium, l'alliage sodium-potassium s'enflamment spontanément à l'air et présentent donc des risques certains. Ces risques d'inflammation, qui dépendent du degré de division du métal, sont présents à température ambiante pour l'alliage sodium-potassium et dès 150 oC pour les autres métaux. Le lithium, le sodium et l'alliage sodium-potassium réagissent violemment avec l'eau : la réaction peut être...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Thermique pour l’industrie

(37 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Métaux liquides
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - EASTMAN (J.A.), CHOI SUSYU (W.), THOMSON (L.) -   Anomalously Increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles.  -  Applied Physics Letters, vol. 78, p. 718-720 (2001).

  • (2) - EASTMAN (J.A.), CHOI SUS, LI (S.) -   Development of energy-efficient nanofluids for heat transfer applications.  -  (2001) http://web.archive.org/web/20010622123846http://www.msd.anl.gov/highlights/ Eastman.html

  • (3) - SAIDUR (R.), LEONG (K.Y.), MOHAMMAD (H.A.) -   A review on applications and challenges of nanofluids.  -  Renewable and Sustainable Energy Reviews, vol. 15, p. 1646-1668 (2011).

1 Outils logiciels

COOLPACK, logiciel de calcul de propriétés physiques de fluide et de calcul de cycles thermodynamiques.

REFPROP, logiciel du NIST (États-Unis) pour le calcul des propriétés des fluides frigorigènes.

PROPHY, logiciel développé par la société PROSIM, pour le calcul des propriétés des fluides.

EES, solveur d'équations contenant une base de données fluide.

ECHTHERM, logiciel développé par le GRETh pour le calcul d'échangeurs thermiques et intégrant une base de données fluides.

HAUT DE PAGE

2 Annuaire

HAUT DE PAGE

2.1 Fournisseurs

Glycol et alcool

Dow Chemical Company http://www.dow.com

Clariant International ltd http://www.clariant.com

BASF http://www.basf.com

Tyforop Chimie Gmbh http://www.chemie.de

Kemetyl http://www.kemetyl.se

Binol http://www.binol.com/

Saumures

Clariant ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Thermique pour l’industrie

(37 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Thermique pour l’industrie

(37 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS