Présentation
EnglishRÉSUMÉ
Les océans du globe recèlent maintes sources d'énergie renouvelable, aujourd'hui quasiment inexploitées. Il existe de nombreuses technologies de récupération de l'énergie des vagues, présentées avec les moyens d'essais associés. L'ordre de grandeur de la ressource est présenté à l'échelle du globe et pour la façade Atlantique de la France métropolitaine. Ensuite, on présente les différents principes de récupération, les nouvelles tendances ainsi que quelques éléments de rendement et d'analyse technico-économique. Enfin, on expose les moyens d'essais que le développement d'un système houlomoteur nécessite de mettre en oeuvre.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Aurélien BABARIT : Ingénieur de recherche au laboratoire LHEEA (CNRS UMR6598) de l'École centrale de Nantes
-
Hakim MOUSLIM : Ingénieur de recherche au laboratoire LHEEA (CNRS UMR6598) de l'École centrale de Nantes
INTRODUCTION
Les océans du globe recèlent maintes sources d'énergie renouvelable, aujourd'hui quasiment inexploitées. Ce sont :
-
l'énergie marémotrice, bien connue en France avec l'exemple de l'usine marémotrice de la Rance ;
-
l'énergie des courants avec les hydroliennes ;
-
l'éolien offshore (énergie du vent en mer) en grande profondeur, où il est nécessaire de concevoir des fondations flottantes innovantes ;
-
l'énergie thermique des mers, dans les zones tropicales, où on exploite la différence de température entre les eaux chaudes de surface, et les eaux froides des grandes profondeurs (1 000 à 2 000 m) ;
-
l'énergie des gradients de salinité, à l'embouchure des fleuves où on exploite la différence de salinité entre l'eau douce et l'eau de mer grâce à la pression osmotique ;
-
et enfin l'énergie des vagues, ces vagues qui animent la surface des océans. C'est la récupération de cette dernière forme d'énergie marine qui fait l'objet de cet article.
À l'échelle du globe, l'estimation du potentiel techniquement exploitable pour la ressource « énergie des vagues » est d'environ 30 000 TWh/an (1 TWh = 1 milliard de kWh). En rapprochant ce chiffre de la consommation énergétique mondiale en 2008, de l'ordre de 100 000 TWh, on se rend compte que l'énergie des vagues n'est pas l'unique solution définitive à la crise énergétique, mais qu'elle peut représenter une contribution non négligeable.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Ressources énergétiques et stockage
(192 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Ressource
Localement, la ressource énergie des vagues se caractérise par son flux d'énergie moyen, exprimée en kilowatt par mètre de front d'onde (kW/m), où le front d'onde correspond à la ligne de crête des vagues. Il s'agit donc de la puissance transportée par unité de largeur de vague.
La figure 1 présente la répartition mondiale de la ressource en moyenne annuelle. On voit que son ordre de grandeur est typiquement de quelques dizaines de kW/m. Dans l'hémisphère Nord, le littoral atlantique européen et la côte ouest du Canada et des États-Unis sont les régions les mieux exposées, avec une ressource supérieure à 40 kW/m. Dans l'hémisphère sud, ce sont le sud du Chili, l'Afrique du Sud, l'Australie, la Nouvelle-Zélande et les îles du Pacifique qui bénéficient de la meilleure ressource, jusqu'à plus de 60 kW/m.
Intéressons-nous au gisement disponible sur la façade atlantique de la France métropolitaine. La figure 2 présente une carte de la ressource disponible. En mer, on peut voir qu'elle est de l'ordre de 40 kW/m. La longueur de côte exposée étant de l'ordre de 1 000 km, la puissance moyenne disponible est de l'ordre de 40 GW.
40 kW/m × 1 000 km = 40 000 MW = 40 GW.
Supposons que 10 % de cette ressource soit effectivement convertie en électricité (on se limite à 10 % afin de prendre en compte qu'il n'est ni souhaitable ni possible de couvrir la façade atlantique de convertisseurs d'énergie des vagues, et que le rendement de ces technologies n'est pas de 100 %). La contribution de l'énergie des vagues à la production électrique française serait alors de l'ordre de 4 GW. C'est l'équivalent de 4 réacteurs nucléaires de nouvelle génération EPR (en se basant sur les 1 650 MW de puissance installée à Flamanville et en supposant un facteur de charge de 75 %). C'est également 7,1 % de la consommation électrique de l'année 2010 (488 TWh).
Là encore, on voit que l'énergie des vagues n'est pas La solution d'approvisionnement énergétique renouvelable. Elle peut cependant représenter une contribution non négligeable. En terme de marché, en supposant un prix de vente de l'électricité de 0,15 ce/kWh, le chiffre d'affaires annuel serait de l'ordre de 5 250 Me.
Cet article fait partie de l’offre
Ressources énergétiques et stockage
(192 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Ressource
BIBLIOGRAPHIE
-
(1) - F. de O. FALCAO (A.) - Wave energy utilization : a review of technologies. - Renewable and Sustainable Energy Reviews, 14(3), p. 889-918 (2009).
-
(2) - BABARIT (A.), HALS (J.) - On the maximum and actual capture width ratio of wave energy converters. - In Proc. Of the 9th European Wave and Tidal Energy Conference, Southampton, UK, 5-9 sept. 2011.
-
(3) - BABARIT (A.), HALS (J.), MULIAWAN (M. J.), KURNIAWAN (A.), MOAN (T.), KROKSTAD (J.) - Numerical benchmarking study of a selection of wave energy converters. - Renewable Energy, 41, p. 44-63 (2012).
-
(4) - MULTON (B.) - Énergie thermique, houlogénération et technologies de conversion et de transport des énergies marines renouvelables, - Éditions Hermès (2012).
DANS NOS BASES DOCUMENTAIRES
European Wave and Tidal Energy Conference http://www.ewtec.org
International Conference on Ocean Energy
HAUT DE PAGE
ANEMOC http://anemoc.cetmef.developpement-durable.gouv.fr/
HAUT DE PAGE
École Centrale de Nantes http://www.ec-nantes.fr
SEM-REV http://www.semrev.fr
France Energies Marines http://www.france-energies-marines.org
European Energy Association http://www.eu-oea.com
International Energy Agency - Ocean Energy Systems http://www.ocean-energy-systems.orf
IPANEMA http://www.ipanema2008.fr
France Telecom Marine https://marine.orange.com/fr/
...Cet article fait partie de l’offre
Ressources énergétiques et stockage
(192 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive