Article

1 - SYSTÈMES PHOTOVOLTAÏQUES : STRUCTURES ET TYPOLOGIE

2 - DIMENSIONNEMENT ÉNERGÉTIQUE DES SYSTÈMES PV

3 - ÉCOCONCEPTION DES SYSTÈMES PHOTOVOLTAÏQUES

4 - SYSTÈMES PHOTOVOLTAÏQUES : EXEMPLES TYPES

5 - ÉLECTRICITÉ PHOTOVOLTAÏQUE ET HYDROGÈNE : VECTEURS ÉNERGÉTIQUES COMPLÉMEN-TAIRES POUR LA TRANSITION

6 - CONCLUSION : SYNTHÈSE ET PERSPECTIVES

Article de référence | Réf : D3936 v2

Électricité photovoltaïque et transition énergétique - Systèmes PV et applications

Auteur(s) : Stéphan ASTIER

Date de publication : 10 sept. 2021

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

L’électricité solaire photovoltaïque, par ses propriétés spécifiques, s’impose comme une composante privilégiée d’une transition énergétique engagée : refonder notre secteur énergétique sur les énergies renouvelables d’origine solaire, seule source d’énergie à basse entropie extérieure à la Terre. Exploitant le rayonnement solaire, cette production d’électricité permet d’alimenter les grands réseaux électriques, aussi bien que les micro-réseaux et les sites isolés. Associée au stockage par batteries ou hydrogène, elle participe aux besoins des systèmes autonomes et mobiles. Cet article en deux parties présente les principales propriétés physiques de l’électricité photovoltaïque, en les reliant à ce contexte sociotechnique complexe dans lequel l’ingénieur doit élaborer des solutions optimales pour la conception et/ou l’opération des systèmes photovoltaïques dans toute leur diversité.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

INTRODUCTION

Le constat scientifique que notre développement moderne fondé sur la consommation d’énergies fossiles perturbe profondément plusieurs équilibres planétaires, particulièrement la biodiversité et le climat, indique la nécessité d’une transition vers un modèle de développement plus soutenable. Confrontée à l’urgence climatique qui fait maintenant consensus depuis l’Accord de Paris adopté en décembre 2015, l’humanité attend beaucoup d’une « transition énergétique » annoncée. Dans ce contexte, la concrétisation d’une utopie déjà ancienne peut apporter une réponse durable à ces enjeux : refonder, à l’instar des chaînes alimentaires de la vie sur la Terre, l’approvisionnement énergétique des sociétés humaines sur la seule source d’énergie à basse entropie extérieure à la Terre : le Soleil.

Les technologies actuelles permettent de mettre à profit cette situation thermodynamique remarquable et plusieurs sources d’énergies renouvelables d’origine solaire à très fort potentiel sont convoquées : rayonnement solaire, éolien sur terre et en mer, hydraulique, biomasse, etc. L’électricité photovoltaïque exploite directement le plus important de tous ces potentiels énergétiques : le rayonnement solaire. Elle a maintenant logiquement pris la tête de ce mouvement en termes de nouvelles capacités installées. Elle peut alimenter en électricité les grands réseaux électriques publics aussi bien que des micro-réseaux ou des sites isolés. Son association au stockage électrochimique, batteries ou hydrogène vert et power-to-gas, eux aussi objets d’importants programmes mondiaux, permet de remédier aux intermittences journalières et aux variations saisonnières d’ensoleillement, ou d’alimenter indirectement des systèmes autonomes ou mobiles. Cette très riche versatilité et ses qualités lui confèrent un énorme potentiel applicatif extrêmement varié. Mais, comme toute technologie, elle n’est pas exempte d’impacts sur notre environnement : afin de « densifier » l’énergie diffuse du rayonnement solaire, elle demande de larges surfaces de capteurs et nécessite la mobilisation de ressources minérales importantes, elles-mêmes épuisables si elles ne sont pas recyclées.

Dans cette série de deux articles, une analyse de la transition énergétique est posée en premier lieu, incluant la situation thermodynamique du système Soleil-Terre ; elle sert de cadre auquel relier explicitement telle ou telle propriété physique spécifique au photovoltaïque présentée par la suite. Puis les propriétés du rayonnement solaire et les principes de sa conversion photo-voltaïque sont décrits ainsi que les dispositifs technologiques qui permettent sa mise en œuvre, de la cellule photovoltaïque élémentaire au générateur multi-cellulaire et modulaire. Cette modularité, combinée à celle de l’électronique de puissance qui conditionne l’électricité photovoltaïque, conduit à une grande variété de structures, d’abord pour les générateurs, ensuite pour les systèmes, de puissances de quelques watts à plusieurs mégawatts, installés en zones aussi bien urbaines et industrielles denses que rurales et isolées. Dans cette deuxième partie, nous détaillons cette diversité de systèmes photovoltaïques et proposons une typologie générique qui l’unifie. On y traite ensuite de l’écoconception des systèmes photovoltaïques. Celle-ci inclut l’évaluation de l’insolation sur site dont la prise en compte est indispensable pour opérer le dimensionnement des générateurs photovoltaïques. Elle inclut également les impacts environnementaux de ces systèmes précisément promus pour réduire notre empreinte écologique. Enfin, quelques exemples de systèmes photo-voltaïques types sont choisis pour en illustrer quelques particularités, particulièrement l’association au vecteur hydrogène-énergie.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-d3936


Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - Agence Internationale de l’Énergie -   Rapport spécial Énergie et changement climatique  -  (2015) https://www.actu-environnement.com/ media/pdf/news-24754-rapport-aie.pdf

  • (2) - ROBOAM (X.) et al -   In : Conception systémique pour la conversion d’énergie électrique 1 – ASTIER (S.) et al. Chapitre 1 Introduction à la démarche systémique de conception,  -  Hermès Sciences, Lavoisier (2012).

  • (3) - ASHOK KUMAR (L.), ALBERT ALEXANDER (S.), RAJENDRAN (M.) -   Power Electronic Converters for Solar Photovoltaic Systems,  -  Elsevier (2020).

  • (4) - YONGHENG YANG (K.), KIM FREDE BLAABJERG (A.), SANGWONGWANICH (A.) -   Advances in Grid-Connected Photovoltaic Power Conversion Systems,  -  Elsevier (2018).

  • (5) - OPIYO (N.) -   Power Electronics for PV-Based Communal Grids.  -  February 2016 in SciRes. http://www.scirp.org/journal/sgrehttp://dx.doi.org/10.4236/sgre.2016.7200

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS