Présentation

Article

1 - PRÉSENTATION GÉNÉRALE

2 - MODÉLISATION D’UNE MACHINE À COURANT CONTINU

3 - COUPLAGES DE L’EXCITATION

4 - COMMANDE EN VITESSE VARIABLE

5 - RÉPONSE INDICIELLE D’UN MOTEUR À EXCITATION SÉPARÉE À FLUX CONSTANT

6 - CONCLUSION

Article de référence | Réf : D3555 v1

Commande en vitesse variable
Machines à courant continu - Constitution et fonctionnement

Auteur(s) : François BERNOT

Relu et validé le 09 juil. 2020

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • François BERNOT : Ingénieur de l’École Supérieure d’Électricité - Docteur en sciences pour l’ingénieur - Maître de conférences à l’UTBM (Belfort)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La classe des moteurs à courant continu n’intègre que les moteurs à collecteurs alimentés en courant continu. Elle exclut les moteurs alternatifs à excitation série, dits universels, qui utilisent la même structure à collecteur, ainsi que les structures « brushless », où le collecteur devient électronique.

Le moteur à collecteur fut la première machine électrique inventée. L’histoire retient le nom de Zénobe Gramme pour sa première réalisation industrielle en 1871. Wernher von Siemens proposa peu après la version à induit cylindrique de cette machine. Ces deux machines, conçues comme une application de la théorie des champs, ne fonctionnaient alors qu’en génératrice. Elles engendrèrent bien des sourires face à la puissance de la vapeur. Mais leur application rapide comme moteur réversible leur valut un franc succès et, dès 1880, des trains de mines furent électrifiés et un premier ascenseur électrique fut construit. Au début du siècle, la traction électrique acquit ses lettres de noblesse, avec plusieurs vitesses record de 205 km/h.

Le moteur à courant continu a l’avantage d’être facile à appréhender, car les deux bobines qui le composent sont non seulement fixes dans l’espace grâce à l’action du collecteur, mais aussi faiblement couplées. Il offre donc une introduction facile au fonctionnement de ses homologues, en donnant des repères clairs, auxquels le néophyte pourra toujours se raccrocher.

Les moteurs à courant continu ont pendant longtemps été les seuls aptes à la vitesse variable à large bande passante (robotique). Ils ont donc fait l’objet de nombreuses améliorations, et beaucoup de produits commercialisés aujourd’hui n’ont rien à envier à leurs homologues sans balais.

Ce sont les progrès de l’électronique de puissance qui ont détrôné les machines à balais, à l’avantage des technologies synchrones autopilotées. Mais les raisons essentielles de ces choix restent l’accès à des vitesses de rotation plus grandes, une meilleure compacité et, très rarement, la fiabilité.

Nota :

cet article est une coédition partielle d’un des chapitres du livre de l’auteur : la vitesse variable électrique, motovariateurs à courant continu [1].

Nota :

ce fascicule décrit tout d’abord la constitution et le fonctionnement d’un moteur simplifié, avant d’aborder une modélisation complète du fonctionnement du moteur seul, puis avec différents couplages. Nous continuons par une étude des modes de commande en vitesse, associée aux problèmes de démarrage. Enfin, nous terminons par une synthèse des utilisations potentielles des moteurs à courant continu, et de leurs perspectives d’évolution.

L’article Machines à courant continu- Construction constituera la suite logique de cet exposé en traitant de la construction des moteurs industriels où les différentes parties constitutives sont analysées en détail. Nous y parlerons des techniques de bobinage de l’induit et de l’inducteur, de leurs calculs, puis des pôles auxiliaires.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d3555


Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

4. Commande en vitesse variable

Nous avons examiné le comportement en alimentation fixe des moteurs pour divers couplages de l’inducteur. Longtemps le moteur à courant continu a été le seul apte à la vitesse variable. De nombreuses solutions furent alors imaginées, en partant de résistances jusqu’aux variateurs électroniques modernes. Nous allons examiner rapidement dans quelles conditions le moteur à courant continu peut être utilisé en variation de vitesse.

4.1 Moteur à excitation séparée

HAUT DE PAGE

4.1.1 Principe de commande

Nous avons vu que la caractéristique de couple de la figure 17 était presque verticale. En négligeant la chute de tension résistive de l’induit (Ri0 ), nous pouvons écrire :

UE = h If Ω

ou encore :

( 7 )

Cette relation rappelle clairement ce que nous avons déjà évoqué : la vitesse de rotation peut être augmentée par une action sur l’induit (U ) ou sur l’inducteur ( If).

Traditionnellement, la stratégie de commande suivante est adoptée :

  • si la vitesse de rotation est inférieure à la vitesse nominale, le flux est maintenu à sa valeur nominale, la variation de vitesse est alors réglée par la tension d’induit ;

  • si la vitesse de rotation est supérieure à la vitesse nominale, la tension d’induit reste constante (imposée par la source), la vitesse est augmentée en baissant le courant d’excitation (défluxage).

La puissance instantanée fournie dans la première zone (flux constant) augmente avec la vitesse, tandis qu’elle reste constante dans la deuxième (défluxage).

La figure 25...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Commande en vitesse variable
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS