Présentation

Article

1 - TECHNOLOGIE DE L'ALTERNATEUR HYDRAULIQUE

2 - FONCTIONNEMENT DE L'ALTERNATEUR

3 - ALTERNATEUR-MOTEUR ET COMPENSATEUR SYNCHRONE

4 - ENVIRONNEMENT

  • 4.1 - Turbines d'entraînement
  • 4.2 - Systèmes d'excitation

5 - CONCLUSION

Article de référence | Réf : D3540 v3

Environnement
Alternateurs hydrauliques et compensateurs

Auteur(s) : Gérard HEMERY

Date de publication : 10 août 2008

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Chaque alternateur qui équipe une centrale électrique d’origine hydraulique correspond à un couple de paramètres (puissance-vitesse) optimal pour le site considéré, il en découle une très grande variété dans le dimensionnement général de ces machines, ainsi que dans leur conception. Cet article présente la technologie utilisée actuellement dans les alternateurs hydrauliques de moyenne et forte puissance. Une attention particulière est portée aux grands compensateurs synchrones qui utilisent la technologie des alternateurs synchrones à pôles saillants. Des considérations techniques autour du fonctionnement des alternateurs sont décrites (freinage, démarrage), ainsi que quelques perspectives sur le marché à moyen terme de l'hydroélectricité.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Gérard HEMERY : Ingénieur de l'École nationale supérieure d'électricité et de mécanique de Nancy - Basic Design Engineering Manager à la Société ALSTOM Hydro France

INTRODUCTION

Le développement des centrales électriques d'origine hydraulique s'est développé maintenant depuis plus d'un siècle. Si, au début du siècle dernier, la puissance unitaire des machines était relativement limitée, l'augmentation de la puissance de sortie des alternateurs et forcément des turbines s'est accélérée principalement à partir des années 1960.

Une des particularités des alternateurs hydrauliques est l'unicité de chaque site : en fonction des conditions hydrauliques (débit et hauteur de chute d'eau), des conditions voulues d'exploitation, on en déduit un couple de paramètres (puissance-vitesse) optimal pour le site considéré. Il en découle une très grande variété dans le dimensionnement général des alternateurs : par exemple, un groupe équipant une chute de faible hauteur au fil de l'eau est nettement différent de celui équipant un barrage de haute montagne. Les turbines associées présentent elles aussi des technologies très différentes (turbine Pelton pour les hautes chutes, turbine Francis pour les chutes moyennes, et turbine Kaplan pour les basses chutes).

Cette grande diversité se traduit par des conceptions très différentes : un alternateur rapide à 600 tr/min a un diamètre réduit et une grande longueur, le rotor est équipé d'un arbre traversant tandis que l'alternateur lent à 75 tr/min a une forme en galette beaucoup plus plate avec un centre rotor mécano-soudé pourvu de plateaux d'accouplement aux deux extrémités.

L'évolution des alternateurs hydrauliques est liée aussi à l'évolution des autres sources d'énergie et à celle des réseaux électriques. Au début du siècle dernier, les groupes qui équipaient les centrales étaient en totalité des groupes producteurs d'électricité. Avec l'augmentation de la puissance des réseaux électriques, du développement des centrales nucléaires, de nouveaux besoins ont vu le jour : nécessité d'absorber une partie de l'électricité produite pendant les heures creuses du fait du manque de souplesse d'exploitation des centrales nucléaires, nécessité de maintenir et de parfaire la stabilité du réseau.

Des centrales de turbinage-pompage ont ainsi vu le jour. Ces centrales limitées en puissance dans les années 1950 ont vu leur puissance unitaire augmenter considérablement avec le développement de l'énergie nucléaire (selon les pays par exemple en France à partir des années 1975, et plus tardivement en Chine à partir des années 1990). Une plus grande souplesse d'exploitation des centrales nucléaires a par la suite ralenti ou même arrêté en Europe l'implantation des centrales de turbinage-pompage mais il n'en reste pas moins que les centrales de pompage constituent une des sources principales pour le stockage de l'électricité.

Actuellement, du fait du renchérissement des combustibles fossiles, d'une utilisation maximale des réseaux et des problèmes liés à leur stabilité, la demande vers des performances accrues (rendement et productivité de la centrale) permet de justifier le développement et l'implantation des groupes à vitesse variable. La rénovation des anciens groupes vers des groupes plus puissants est d'actualité dans les pays industrialisés où il n'est guère possible d'augmenter le potentiel hydroélectrique.

Ce dossier présente la technologie utilisée actuellement dans les alternateurs hydrauliques de moyenne et forte puissance. Les mini-centrales utilisent des concepts assez semblables avec les simplifications permises dues aux contraintes plus faibles (mécaniques, électriques, thermiques) qu'endurent ces machines. Les simplifications sont par ailleurs fortement liées à des contraintes de fabrication intrinsèques au fabricant.

Une attention est portée aussi aux grands compensateurs synchrones qui utilisent la technologie des alternateurs synchrones à pôles saillants. Leur développement s'est particulièrement fait à partir des années 1960 pour pallier aux problèmes de stabilité des lignes et à la nécessité de réguler l'énergie réactive principalement sur les lignes longues (Canada et Brésil). La concurrence des systèmes statiques a cependant ralenti fortement leur implantation.

Des considérations techniques autour du fonctionnement des alternateurs sont également présentées (freinage, démarrage) ainsi que quelques considérations sur le marché à moyen terme de l'hydroélectricité.

Pour des explications complémentaires, le lecteur pourra se reporter, dans ce traité, aux articles :

  • Machines synchrones. Fonctionnement en régime permanent [D 3 522] ;

  • Machines synchrones. Excitation [D 3 545].

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v3-d3540


Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Environnement

4.1 Turbines d'entraînement

Nota

le lecteur se reportera au dossier Turbines hydrauliques. Description et évolution [B 4 407].

  • Les plus hautes chutes (plusieurs centaines de mètres) sont équipées de turbines Pelton. Primitivement, ces turbines, qui ont comme ancêtre la roue de moulin, étaient à axe horizontal et à un seul jet. Puis, le nombre de jets s'est multiplié avec l'accroissement de la puissance et, actuellement, ces turbines sont généralement à axe vertical avec un nombre de jets atteignant 5 à 6 dans les plus grandes puissances (de l'ordre de 200 MW).

  • Les chutes moyennes, dans une gamme très large (40 m < H < 600 m), sont équipées de turbines Francis. Quelques petites turbines Francis sont à axe horizontal mais les installations de moyenne et de grande puissances sont toutes à axe vertical. L'alimentation se fait par une bâche spirale à travers un avant-distributeur fixe et un distributeur mobile ; l'eau s'échappe de la roue à travers un diffuseur coudé récupérant une partie de l'énergie cinétique de l'eau. Ce sont les turbines Francis qui atteignent les plus grandes puissances, actuellement de l'ordre de 800 MW.

    Ces turbines peuvent fonctionner en pompe par inversion du sens de rotation, elles sont utilisées dans les groupes réversibles de turbinage-pompage.

  • Les basses chutes (5 m < H < 50 m) sont équipées de turbines hélices ou Kaplan (qui sont des turbines hélices à pales orientables). Ces turbines sont traditionnellement à axe vertical ; depuis 1955, elles ont trouvé une forme nouvelle de développement dans les groupes bulbes où l'alternateur est immergé dans un bulbe situé à l'amont d'une turbine à axe horizontal, ce qui permet un écoulement axial plus simple par suppression de la bâche spirale et adoption d'un aspirateur tronçonique droit. Cette disposition améliore le rendement du groupe et réduit le coût des travaux du génie civil de la centrale pour des chutes inférieures à 20 m.

    Ces turbines sont également réversibles et peuvent fonctionner en pompe, par exemple à la centrale...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Environnement
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SAINT-MICHEL (J.) -   Bobinage des machines tournantes à courant alternatif.  -  [D 3 420] Convertisseurs et machines électriques, fév. 2001.

  • (2) - BERTIN (Y.) -   Refroidissement des machines électriques tournantes.  -  [D 3 460] Convertisseurs et machines électriques, mai 1999.

  • (3) - BEN AHMED (H.), BERNARD (N.), FELD (G.) -   Machines synchrones. Fonctionnement en régime permanent.  -  [D 3 522] Convertisseurs et machines électriques, mai 2007.

  • (4) - WETZER (P.) -   Machines synchrones. Excitation.  -  [D 3 545] Convertisseurs et machines électriques, fév. 1997.

  • (5) - BRUTSAERT (P.), LALOY (D.), ROBERT (P.) -   Construction des machines tournantes. Caractéristiques.  -  [D 3 570] Convertisseurs et machines électriques, nov. 2005.

  • (6) - BRUTSAERT (P.), LALOY (D.), ROBERT...

1 Sources bibliographiques

LIWSCHITZ (M.) - MARET (L.) - Calcul des machines électriques. - Bibliothèque de l'ingénieur.

CAHEN (F.) - Électrotechnique, tome IV. Machines tournantes à courant alternatif. - Éditions Gauthier Villars.

WALKER (J.H.) - Large synchronous machines. - Clarendon Press Oxford.

VOGELE (H.) - Design of the generators for Three Gorges. - (ABB), Hydropower and dams (1998).

MAZZOCCO (M.) - HÉMERY (G.) - FERMAUT (J.M.) - High rated generators-motors for pumped storage station. - CIGRE (2000).

HÉMERY (G.) - COULON (J.) - Centrales Hydroélectriques et apport de la vitesse variable. - Revue REE (1999).

HÉMERY (G.) - Alternateurs lents de grande puissance. - Revue 3EI, no 40, mars 2005.

HÉMERY (G.) - HOUDELINE (J.B.) - Turbines-pompes et alternateurs-Moteurs de centrales hydrauliques. - Revue 3EI, no 49, juin 2007.

VUILLEROD (G.) - FRANÇOIS (M.) - KUNZ (T.) - Efficient rehabilitation of hydro generating units. - Hydro Power and Dams (2007).

HAUT DE PAGE

2 Normes et standards

CEI 60034 - 04-04 - Machines électriques tournantes en particulier Partie 1 : Caractéristiques assignées et caractéristiques de fonctionnement - -

HAUT DE PAGE

3 Annuaire

Organismes

CIGRE Conférence Internationale des Grands Réseaux Électriques...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS