Présentation

Article

1 - L’UTILISATION DU PU DANS LE MONDE

2 - CARACTÉRISTIQUES NEUTRONIQUES DU PU

3 - INCIDENCE DU PU SUR LES CARACTÉRISTIQUES DES RÉACTEURS

4 - COMPORTEMENT DU COMBUSTIBLE MOX EN RÉACTEUR

5 - FABRICATION DU COMBUSTIBLE MOX

6 - TRAITEMENT DU MOX

  • 6.1 - Traitement proche de celui de l’oxyde d’uranium
  • 6.2 - Quelques spécificités à prendre en considération

7 - AMÉLIORATIONS POSSIBLES POUR FACILITER L’UTILISATION DU PU DANS LES REL

8 - PERFORMANCES DES CONCEPTS AU NIVEAU D’UN PARC ÉLECTRONUCLÉAIRE

Article de référence | Réf : BN3245 v1

Comportement du combustible MOX en réacteur
Gestion du plutonium civil

Auteur(s) : Bruno SICARD, Alain ZAETTA

Relu et validé le 04 févr. 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Le combustible  irradié en sortie des réacteurs nucléaires contient une grande quantité de plutonium. Cet article décrit les caractéristiques et les usages possibles de ce plutonium, notamment sous forme de MOX. Il tente d’apporter les éléments techniques associés aux différentes options et solutions stratégiques de la gestion du plutonium. Une comparaison des performances des différents procédés vient conclure cette présentation.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Bruno SICARD : Conseiller scientifique du Commissariat à l’énergie atomique(CEA / Direction de l’énergie nucléaire) à Saclay

  • Alain ZAETTA : Chef du service de physique des réacteurs et du cycle au Commissariat à l’énergie atomique (CEA / Direction de l’énergie nucléaire) à Cadarache

INTRODUCTION

Au niveau mondial le combustible irradié déchargé annuellement des réacteurs nucléaires contient environ 70 tonnes de plutonium, soit l’équivalent de près de 150 Mtep (millions de tonnes équivalent pétrole), ce qui est supérieur à la production annuelle de pétrole du Koweit. Entre 1960 et 1970, les recherches sur le recyclage du plutonium dans les réacteurs à neutrons rapides sont stimulées par la crainte de voir les réserves en uranium s’amoindrir voire s’épuiser. Au début des années 1980, l’intérêt pour cette technologie est relancé, mais seul le monorecyclage du plutonium dans les réacteurs à eau légère est mis en œuvre. Au début des années 1990, deux événements sont venus modifier ce contexte avec, d’une part, l’opposition d’une partie de l’opinion publique à l’enfouissement des déchets nucléaires de haute activité et à vie longue ce qui à conduit en France à la loi de décembre 1991 définissant trois axes de recherche pour la gestion des déchets, d’autre part, la conséquence des accords de désarmement conclu entre la Russie et les États-Unis.

Les développements abordés dans cet article tenteront d’apporter les éléments techniques associés aux différentes options et solutions stratégiques de la gestion du plutonium.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bn3245


Cet article fait partie de l’offre

Génie nucléaire

(169 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

4. Comportement du combustible MOX en réacteur

L’objectif général est d’utiliser le combustible MOX dans les mêmes conditions que le combustible UO2 . Or depuis son introduction en réacteur en France dans les REP 900, le MOX est irradié pendant 3 cycles annuels, alors que le combustible UO2 réside 4 cycles en réacteur. La gestion est dite gestion « hybride ».

La future gestion appelée « Parité MOX » vise à gérer le combustible MOX comme le combustible UO2 . Il est donc nécessaire d’accroître l’épuisement de décharge du MOX en amenant son taux de combustion maximal (taux de combustion moyen de l’assemblage le plus chargé) à la même valeur que celui de l’UO2 : 52 GWj / t depuis 1998.

L’enjeu économique est important car l’atteinte de la parité entre les combustibles UO2 et MOX permettra de gérer de la même façon les deux types d’assemblages d’un même chargement et d’éviter la gestion « hybride » plus complexe en exploitation. De plus, l’augmentation de l’épuisement favorise le MOX qui ne doit pas comme l’UO2 être « surenrichi », ce qui a donc une répercussion bénéfique directe sur le coût du cycle.

Dans une première étape, en vue du passage en 2005 d’une stratégie de gestion « hybride » à une stratégie de gestion de 4 cycles annuels pour les deux types de combustibles dans les REP 900 MWe du parc EDF, on vise un taux d’épuisement maximal de 52 GWj / t. À moyen terme (vers 2010), en vue de gagner de la souplesse dans la gestion du combustible, l’objectif sera de porter le taux de combustion maximal des combustibles UO2 et MOX à une valeur de 55 à 60 GWj/ t.

En soutien de cet objectif, les axes de recherche et développement sont analogues à ceux développés pour la recherche des forts taux de combustion sur l’UO2 à savoir :

  • le matériau de gainage, (en application directe de la recherche et développement pour l’UO2) ;

  • le comportement du combustible actuel [MOX / MIMAS (Micronisation Master blend )] en conditions nominales et jusqu’à de forts taux de combustion : thermique, variations dimensionnelles, sollicitations sur la gaine, relâchement des gaz de fission ;

  • le comportement global du crayon en conditions incidentelles (notamment rampes de puissances en transitoires...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Génie nucléaire

(169 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Comportement du combustible MOX en réacteur
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - Livret CEA -   Les centrales nucléaires dans le monde.  -  Édition 2000, CEA Direction de la stratégie et de l’évaluation 91191 Gif-sur-Yvette cedex, ISSN – 1280 – 9039.

  • (2) - BUSSAC (J.), REUSS (P.) -   Traité de neutronique.  -  Hermann ISBN 2 7056 6011 9.

  • (3) -   Accelerator-driven systems (ADS) and Fast Reactors (FR) in advanced nuclear fuel cycles – A comparative study.  -  OCDE/AEN. La Seine Saint Germain, Issy-les-Moulineaux, 350 p. (2002).

  • (4) - Ouvrage collectif -   Les déchets nucléaires.  -  Les éditions de physique, SFP – ISBN 286883-301-2 (1997).

  • (5) - HESKETH (K.), DELPECH (M.), SARTORI (E.) -   The physics of plutonium fuels.  -  A review of organisation for Economic cooperation and development/Nuclear energy agency activites Nuclear Technology, volume 131, sept. 2000.

  • (6) - ANIEL...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Génie nucléaire

(169 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS