Présentation

Article

1 - CONTEXTE

2 - CO-CONCEPTION DE L’ÉTAGE DE PUISSANCE ET DE LA BOUCLE DE RÉGULATION

3 - PRINCIPES DE FONCTIONNEMENT DE 3 TOPOLOGIES USUELLES DE CONVERTISSEUR DE TENSION INDUCTIF NON ISOLÉ

4 - ÉTAGE DE PUISSANCE

5 - CONCLUSION

6 - GLOSSAIRE

Article de référence | Réf : D3182 v1

Co-conception de l’étage de puissance et de la boucle de régulation
Convertisseurs de tension intégrés inductifs : principes fondamentaux

Auteur(s) : Bruno ALLARD

Date de publication : 10 août 2017

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La conversion statique dite continue-continue, ou DC-DC, repose sur quelques structures bien connues qui ont été adaptées aux petites échelles de tension et de puissance, avec les topologies hacheurs parallèle ou série, ou encore boost, buck et buck-boost en les combinant. L’échelle de tension faible permet l’utilisation de technologies intégrées de semi-conducteur et ouvre la possibilité de solutions avancées en terme de contrôle en boucle fermée. L’article couvre ici des rappels sur le découpage de la tension continue pour en abaisser la valeur ou l’élever et le lien avec la technologie CMOS sur silicium. Le dimensionnement d’un étage de puissance est ensuite présenté ainsi que la manière d’extraire les données essentielles pour gérer ce dimensionnement.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Bruno ALLARD : Professeur des Universités - Département de Génie Électrique à l’INSA de Lyon - Laboratoire Ampère, UMR CNRS 5005, Villeurbanne, France

INTRODUCTION

La conversion statique de l’énergie électrique se concrétise notamment par des convertisseurs à découpage. Le propos ici concerne la conversion d’un niveau de tension continue vers un autre, dont l’amplitude est soit plus grande soit plus petite. On parle également de régulateur de tension à découpage, en référence aux régulateurs de tension linéaires. La fonction recherchée est bien de créer un niveau de tension (continue) de valeur précise, pour alimenter une fonction. Dans les produits électroniques de faible puissance, ces convertisseurs sont nombreux. Ils le sont encore plus quand le produit électronique est alimenté par une batterie ou une pile. Tous les appareils nomades répondent à ce critère en général mais un téléviseur moderne, à diodes électroluminescentes, pose les mêmes contraintes de conversion d’énergie, mais dans ce cas la tension initiale est produite à partir du réseau électrique.

Jusqu’à un passé encore récent, le régulateur de tension (type 7805) répondait à l’objectif de générer une tension continue précise (en l’occurrence 5 volts) à partir d’une source primaire de tension continue, plus ou moins régulée (en l’occurrence au moins 9 volts en ce qui concerne le circuit 7805). Avec la démocratisation des batteries de petite taille, il est devenu nécessaire de penser au rendement de conversion, pour un objectif d’autonomie. En effet il existe pour un régulateur de tension linéaire un rendement dans le rapport entre sa tension de sortie et sa tension d’entrée. Si la tension à générer vaut la moitié de la tension d’entrée, 50 % de l’énergie est dissipée en chaleur. Or les produits électroniques utilisent des circuits souvent fabriqués en technologie CMOS, et dont la tension d’alimentation est toujours plus petite avec l’avancement technologique. En outre, les circuits électroniques alimentés par le régulateur de tension peuvent présenter une variation très rapide de consommation (le courant appelé). Pour maintenir la tension de sortie à sa valeur nominale, une boucle de régulation doit être mise en place. Il est aussi nécessaire maintenant d’ajuster en temps réel la valeur de la tension continue. Le rôle de la boucle de régulation, ou boucle fermée ou schéma de contrôle, sera double. Même triple si l’on considère que la tension d’entrée (batterie) va varier inexorablement durant les cycles de décharge et de charge. La boucle de régulation devra là encore maintenir la tension de sortie à sa valeur nominale. Un régulateur linéaire peut le faire mais un convertisseur statique à découpage aussi et il a été montré que son rendement énergétique est supérieur à celui d’un régulateur linéaire de tension [D3075].

Le contexte de cet article est donc l’alimentation de circuits électroniques intégrés à partir d’une tension faible, une batterie par exemple, donc située entre 5 volts (la charge), 3,3 volts (la tension nominale) et 2,7 volts (la tension limite basse) dans le cas d’une cellule lithium-ion standard. Les technologies CMOS sur silicium, avancées, avec lesquelles sont fabriquées les circuits à alimenter, exigent des tensions inférieures à 1,2 volts maintenant. Il s’agira d’un convertisseur abaisseur (dit hacheur série ou buck). Le facteur de conversion entre tension de sortie et tension d’entrée est donc de 0,36 (ce serait le rendement d’un régulateur linéaire). Certaines fonctions exigent par contre des tensions élevées comme l’éclairage à diodes électroluminescentes (12 volts) ou la valeur de tension nécessaire pour l’écriture de données dans une mémoire de type Flash. Le convertisseur aura pour fonction d’élever la tension (il sera appelé hacheur parallèle ou boost). Le troisième cas de convertisseur est appelé buck-boost car il mutualise ses composants pour produire les deux actions.

Chaque circuit intégré fonctionnel au sein d’un produit nécessite une tension d’alimentation spécifique, et un convertisseur à découpage particulier lui est associé, quand il est posé sur une carte (au sein du produit). Un autre circuit avec une tension d’alimentation différente nécessitera un autre convertisseur. On comprend que cette approche explique la place importante dédiée à ces convertisseurs à la surface d’une carte électronique. Il y a donc nécessité « d’intégrer » chaque convertisseur. En pratique le présent article montrera que les composants actifs et la boucle de régulation sont co-intégrés sur la même puce de silicium et les composants passifs connectés à cette puce (on les dira off-chip). Les moyens d’assembler au plus près les composants passifs avec la puce silicium seront discutés dans l’article [D3185].

Une autre approche consiste à faire « entrer » le convertisseur de tension dans la puce qui porte les fonctions électroniques qui cherchent une alimentation. Cette approche est présentée dans l’article [D3186].

Les articles D3185 et D3186 partagent deux fondamentaux : l’étage de puissance du convertisseur qui correspond à un premier choix qui conditionne les performances du convertisseur, et par ailleurs la boucle de régulation qui va donner au convertisseur ses caractéristiques de performances statiques et dynamiques. La performance statique sera la précision sur la tension de sortie tandis que les performances dynamiques caractériseront la capacité du convertisseur à maintenir la tension de sortie à sa valeur nominale quelles que soient les perturbations qui toucheraient le convertisseur.

Aussi seront présentés ici les étages de puissance intégrés les plus utilisés, puis une approche de conception sera proposée pour leur dimensionnement.

L’article [D3183] introduira le rôle de la boucle de régulation et ses objectifs. De multiples stratégies sont possibles, en tension ou en courant, linéaires ou non. L’idée n’est pas ici de proposer une vue exhaustive de la notion de boucle de régulation mais de présenter les approches les plus utilisées et la manière de les dimensionner. L’article [D3184] couvrira les approches dites hystérétiques, ou en mode dit glissant alors que l’article [D3183] traitera des solutions déterministes. Dans le cas des stratégies hystérétiques ou en mode glissant, il sera montré que la fréquence du découpage est fortement variable. Des circuits électroniques comme les radios sans fil s’en accommodent mal. Des solutions de synchronisation sont alors mises en œuvre, également présentées dans l’article [D3184] et illustrées dans l’article [D3185].

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d3182


Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

2. Co-conception de l’étage de puissance et de la boucle de régulation

La figure 1 montre un filtre en sortie composé d’une inductance et d’un condensateur. Une tendance consiste à mettre tout en œuvre pour réduire la taille de ces composants passifs. On verra plus loin que l’objectif de grandes performances dynamiques s’accompagnent d’un condensateur de petite taille, mais qui doit être compensée par une fréquence de découpage plus élevée. La réduction de la taille du condensateur en sortie est également la clef pour l’approche DVS. En effet, maîtriser le temps de correction des perturbations sur la tension de sortie consiste à minimiser les charges et décharges du condensateur, c’est-à-dire diminuer également le courant fourni ou prélevé au condensateur. L’inductance qui fournit l’énergie au condensateur (figure 1) est soumise à moins de variation de courant et l’énergie mobilisée pour la correction de tension est moindre. Pour autant, diminuer la taille du condensateur de sortie au profit de la taille de l’inductance trouve une limite. Une inductance grande va s’opposer à la variation du courant qui la traverse, aussi sur un échelon de courant, la tension de sortie subira une forte variation car peu de courant sera disponible pour corriger la charge du condensateur. Ce que l’inductance ne peut fournir ou absorber, c’est le condensateur qui en héritera.

En résumé une haute fréquence de découpage est intéressante du point de vue de la dynamique de sortie du convertisseur mais le coût est élevé en terme de pertes Joule. L’architecture à plusieurs phases de conversion, ou convertisseur multi-phases, correspond à plusieurs convertisseurs quasi indépendants, fournissant du courant au même condensateur en sortie ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(270 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Co-conception de l’étage de puissance et de la boucle de régulation
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - LU (Y.), JIANG (J.), KI (W.-H.), YUE (C.), SIN (S.-W.), SENG-PAN (U.), MARTINS (R.) -   A 123-phase DC-DC converter-ring with fast-DVS for microprocessors,  -  in Solid-State Circuits Conference – (ISSCC), IEEE International, pp. 1-3 (2015).

  • (2) - SOTO (A.), De CASTRO (A.), ALOU (P.), COBOS (J.), UCEDA (J.), LOTFI (A.) -   Analysis of the buck converter for scaling the supply voltage of digital circuits,  -  IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2432-2443, Nov. 2007.

  • (3) - SU (F.), KI (W.-H.), TSUI (C.-Y.) -   Ultra fast fixed-frequency hysteretic buck converter with maximum charging current control and adaptive delay compensation for DVS applications,  -  IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 815-822, Apr. 2008.

  • (4) - BURD (T.D.), BRODERSEN (R.W.) -   Design Issues for Dynamic Voltage Scaling,  -  in Proceedings of the 2000 International Symposium on Low Power Electronics and Design, ISLPED’00, pp. 9-14.

  • (5) - CHENG (P.), VASIC (M.), GARCIA (O.), OLIVER (J.), ALOU (P.), COBOS (J.) -   Minimum time...

ANNEXES

  1. 1 Événements

    1 Événements

    PowerSoC/SiP : colloque dédié tous les deux ans aux convertisseurs statiques de puissance intégrés http://pwrsocevents.com

    HAUT DE PAGE

    Cet article est réservé aux abonnés.
    Il vous reste 93% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Conversion de l'énergie électrique

    (270 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS