Présentation
EnglishAuteur(s)
-
Philippe NIKA : Professeur, université de Franche-Comté, CNRS
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Selon les niveaux thermiques de leurs sources et puits de chaleur, les machines thermodynamiques sont divisées en deux catégories : les moteurs thermiques produisant de l'énergie mécanique à partir d'énergie thermique et les générateurs thermiques ou refroidisseurs ou encore pompes à chaleur qui sont des récepteurs d'énergie mécanique et fournisseurs d'énergie thermique. En 1979, Ceperley découvre que les machines de Stirling ne sont autres que des machines thermoacoustiques utilisant les particularités des ondes de pression progressives. Les deux types d'ondes de pression stationnaires et progressives donnent en effet naissance aux deux classes de machines correspondantes. Dans une onde stationnaire, le gaz oscille avec une phase pression-vitesse voisine de 90o et il interagit avec la paroi du « stack » dont le diamètre hydraulique est voisin de la taille de la couche limite thermique, ce qui induit un contact thermique volontairement imparfait. Dans une machine à onde progressive (à laquelle se rattache la machine Stirling), cette phase est voisine de 0o ; le fluide et la paroi sont en très bon contact thermique (car le régénérateur a un diamètre hydraulique très inférieur à l'épaisseur de couche limite thermique), le fonctionnement est proche de la réversibilité thermodynamique et les coefficients de performance approchent les valeurs maximales prévues par le coefficient de Carnot.
Cet article fait suite à l'article [BE 8 060] traitant des « effets thermoacoustiques» et utilise largement les notions et relations qui y ont été développées.
Il est complété par les deux articles [BE 8 062] et [BE 8 063] respectivement consacrés à la modélisation, au dimensionnement des systèmes thermoacoustiques et à l'étude des combinaisons moteur/générateur thermoacoustiques.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Ressources énergétiques et stockage
(191 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Moteurs Stirling « thermoacoustiques »
Comme exposé dans l'article [BE 8 060] Convertisseurs thermoacoustiques. Effet thermoacoustique, le phénomène d'amplification thermoacoustique de l'énergie mécanique sous forme d'onde acoustique est utilisable pour réaliser des moteurs à partir de la transformation de la chaleur fournie par la source chaude. En association avec un générateur électrique, les systèmes thermoacoustiques sont déjà utilisés pour des générateurs électriques nomades par des organismes comme la NASA aux États-Unis.
Les travaux de Peter H. Ceperley [1] [2] [3] en 1979 sur les convertisseurs d'énergie à ondes progressives ainsi que les réalisations postérieures par Backhaus et Swift [4] [5] de prototypes de machines Stirling « thermoacoustiques » ont ouvert la voie à la réalisation de systèmes de plus en plus performants. Le mini générateur électrique thermoacoustique de Backhaus, Tward et Petach, réalisé pour la NASA [6] (figure 1), offre déjà une puissance électrique de 39 W avec un rendement global...
Cet article fait partie de l’offre
Ressources énergétiques et stockage
(191 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Moteurs Stirling « thermoacoustiques »
BIBLIOGRAPHIE
-
(1) - CEPERLEY (P.H.) - A pistonless Stirling engine : The traveling wave heat engine. - J. Acoust. Soc. Am., 66(5), p. 1508-1513, nov. 1979.
-
(2) - CEPERLEY (P.H.) - Gain and efficiency of a traveling wave heat engine. - J. Acoust. Soc. Am., 72(6), p. 1688-1694, déc. 1982.
-
(3) - CEPERLEY (P.H.) - Gain and efficiency of a short traveling wave heat engine. - J. Acoust. Soc. Am., 77(3), p. 1239-1244, mars 1985.
-
(4) - BACKHAUS (S.), SWIFT (G.W.) - A thermoacoustic Stirling heat engine Nature. - vol. 399, no 6734, p. 335-338 (1999).
-
(5) - BACKHAUS (S.), SWIFT (G.W.) - A thermoacoustic Stirling heat engine : detailed study. - J. Acoust. Soc. Am., 107(6), p. 3148-3166, juin 2000.
-
(6) - BACKHAUS (S.), TWARD (E.), PETACH (M.) - Traveling wave thermoacoustic electric generator. - Applied Physics...
Cet article fait partie de l’offre
Ressources énergétiques et stockage
(191 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive