Présentation

Article

1 - CONSTITUTION GÉNÉRALE

2 - SYSTÈMES EN DÉVELOPPEMENT

  • 2.1 - Système fer-chrome
  • 2.2 - Système polybromure-polysulfure
  • 2.3 - Système vanadium-vanadium

3 - PERSPECTIVES

Article de référence | Réf : D3357 v1

Constitution générale
Accumulateurs - Accumulateurs « redox-flow »

Auteur(s) : Jack ROBERT, Jean ALZIEU

Date de publication : 10 nov. 2005

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les accumulateurs électrochimiques de type redox-flow représentent un principe particulier d’accumulateurs dont les réactifs et produits de réaction sont en solution dans un électrolyte, à l’anode comme à la cathode. Ces électrolytes, contenus dans deux demi-cellules, sont mis en circulation, d’où leur appellation. La capacité des accumulateurs « redox-flow » est facilement maîtrisée, d’où leur utilisation très fréquente pour le stockage d’énergie.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Jack ROBERT : Professeur émérite à l’université Paris Sud XI

  • Jean ALZIEU : Ingénieur-chercheur à Électricité de France

INTRODUCTION

Comme tout générateur électrochimique, un accumulateur « redox-flow » est le siège d’une réaction d’oxydation et d’une réaction de réduction qui se développent respectivement au niveau de chaque électrode. Sa spécificité vient du fait que les réactifs et produits de réaction sont en solution dans un électrolyte ad hoc, aussi bien à l’anode qu’à la cathode. De ce fait, un accumulateur redox-flow est constitué de deux demi-cellules contenant chacune l’un de ces électrolytes. Ces derniers sont mis en circulation. C’est au titre de cette mise en circulation de l’électrolyte que les accumulateurs étudiés dans le présent document sont appelés « redox-flow ».

Les électrolytes sont stockés dans des réservoirs et mis en circulation jusqu’aux demi-cellules, sièges des processus réactionnels. La continuité du circuit électrique impose que les deux demi-cellules soient séparées par une paroi semi-perméable autorisant le passage d’un ion commun aux deux électrolytes. Un accumulateur redox-flow comporte un réacteur électrochimique, constitué des demi-cellules, un dispositif de mise en circulation de l’électrolyte et des compartiments de stockage (réservoirs).

La capacité d’un accumulateur redox-flow est liée à la taille des réservoirs tandis que sa puissance est liée à celle du réacteur. Le découplage de ces deux paramètres est un avantage. Ainsi, la maîtrise de la capacité conduit à envisager l’emploi de ce type d’accumulateur pour le stockage massif dans les réseaux d’énergie. Il importe pour ce faire, de disposer de réservoirs de taille suffisante, tandis que l’indépendance vis-à-vis de la puissance est conditionnée par l’utilisation envisagée.

Dans un accumulateur, les processus de vieillissement ou de dégradation affectent généralement les parties solides. Il peut s’agir des électrodes (citons à titre d’exemples, le « shedding » et le « softening » de l’accumulateur au plomb) ou d’un élément de structure (par exemple, fissure du tube d’alumine β d’un accumulateur haute température). Les réactifs et produits de l’accumulateur redox-flow, en phase liquide, sont à l’abri de ces problèmes, ce qui, potentiellement, confère à cet accumulateur une importante durée de vie.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d3357


Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

1. Constitution générale

Nous avons vu que les générateurs électrochimiques de type redox-flow se caractérisent par le fait que leurs matériaux actifs et produits de réaction sont en solution. Deux électrolytes sont nécessaires, chacun portant en solution un couple redox. Les potentiels d’électrode de ces couples redox doivent être suffisamment distants pour générer une force électromotrice suffisante. L’électrolyte portant le couple redox de plus haut potentiel est dit électrolyte positif, ou catholyte, l’autre étant l’électrolyte négatif, ou anolyte. Ces deux électrolytes ne peuvent être mélangés, sous peine d’une réaction d’oxydoréduction spontanée entre l’oxydant positif et le réducteur négatif, équivalente à un court-circuit interne. Au sein d’une cellule élémentaire, la membrane semi-perméable qui sépare les deux compartiments remplis, respectivement d’anolyte et de catholyte, permet le transfert sélectif d’un type d’ion dont la migration assure le transport de charges imposé par la circulation externe d’un courant électrique.

  • Architecture

    L’architecture générale d’un système redox-flow est présentée figure 1. Dans chaque compartiment, l’électrolyte est en contact avec une électrode inerte, jouant le rôle de collecteur et à la surface de laquelle s’effectue le transfert de charge associé à chaque demi- réaction. Ces dernières s’écrivent :

    • à l’électrode positive, en notant Redp – Oxp le couple redox correspondant :

    • à l’électrode négative, en notant Redn – Oxn le couple redox correspondant :

    • soit, globalement, et en équilibrant le nombre d’électrons respectivement reçus et fournis :

      ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Constitution générale
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   *  -  Pour faciliter la recherche des documents cités, les références bibliographiques concernent, pour l’essentiel, le « Journal of power sources » (J. Power Sources), le « Journal of the Electrochemical Society » (J. Electrochem. Soc.) et les actes du Colloque Gaston Planté 2000 (Paris, 30-31 octobre 2000). L’éditeur du « Journal of power sources » est Elsevier (Amsterdam), son adresse électronique est la suivante : http://www.sciencedirect.com/science/ journal/03787753. L’éditeur du « Journal of the Electrochemical Society » est l’« Electrochemical Society » (New York). Le colloque Gaston Planté 2000 a été organisé conjointement par la Société française de chimie (250 rue Saint Jacques, 75005 Paris) et la Société française de thermique. Quelques travaux de thèse sont également cités. Les bibliothèques universitaires détiennent les mémoires originaux.

  • (2) - VINCENT (C.A.), SCROSATI (B.) -   Modern Batteries  -  (Piles et accumulateurs modernes). p. 340 ; 1997 John Wiley and Sons Inc., NY.

  • (3) - LINDEN (D.) -   Handbook of Batteries  -  (Traité sur les piles et accumulateurs). p. 1149 ; 1994 MacGraw Hill Inc., NY.

  • (4) - ATKINS (P.W.) -   Éléments...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS