Présentation
EnglishRÉSUMÉ
Le soliton est apparu dans les années 1990 comme une technique extrêmement prometteuse pour transmettre sur des fibres optiques des débits très élevés sur de très grandes distances: un effort de recherche très important a été fait sur le sujet par les grands acteurs de la recherche en télécommunications, des records de distance et de capacité ont été atteints, mais les applications attendues ne se sont pas concrétisées dans les réseaux. Cet article explique la physique du phénomène, les propriétés de la transmission de solitons, et présente les résultats qui ont été obtenus et restent scientifiquement tout à fait intéressants.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Thierry GEORGES : Oxxius, Lannion, France
-
Michel JOINDOT : Laboratoire Foton UMR CNRS 6082, Lannion, France
-
Irène JOINDOT : École nationale supérieure d'ingénieurs de Caen (ENSICAEN, ex ENSEEC), France - Note de l'éditeur Cet article est la réédition actualisée de l'article [E 1 985] intitulé « Solitons dans les fibres optiques » paru en 1999, rédigé par Thierry GEORGES
INTRODUCTION
Le soliton est une impulsion qui possède la propriété remarquable de pouvoir se propager sans altération sur des distances extrêmement grandes (théoriquement infinies) grâce à la compensation mutuelle des effets linéaires et non linéaires. Les solitons ont été observés dès le XIX e siècle dans le domaine de la mécanique des fluides, sous la forme de vagues avançant sans se déformer sur des cours d'eau et des physiciens en ont fait la modélisation.
Ce concept a pu être appliqué aux télécommunications optiques dans les années 1990 grâce aux faibles pertes atteintes par les fibres optiques monomodes et à l'arrivée des amplificateurs optiques permettant de les compenser : le maintien de l'impulsion au cours de sa propagation dans la fibre est alors assuré par compensation mutuelle de la dispersion chromatique (linéaire) et de l'effet Kerr (non linéaire) : chacun de ces effets pris séparément déforme le signal, mais leur combinaison lui permet de maintenir sa forme initiale. Par ailleurs, compte tenu du fait que le concept même de soliton suppose que l'on est en régime non linéaire, il est possible de travailler à forte puissance, ce qui est interdit en régime non solitonique où les non-linéarités constituent un effet négatif qui dégrade le signal. Qui plus est, contrairement à ce qui se passe usuellement en transmission, le soliton présente des caractéristiques étranges, comme par exemple la possibilité de séparer un signal et un bruit occupant la même bande de fréquences. L'idée est naturellement venue d'exploiter ces propriétés pour transmettre des signaux sur des distances extrêmement grandes, au-delà des limites permises à cette époque par les techniques « conventionnelles » ; une application potentielle intéressante était la transmission sous-marine, pour laquelle les distances atteignent plusieurs milliers de kilomètres (10 000 km pour un lien transpacifique).
Des propagations sur des distances quasi infinies (des millions de kilomètres), bien au-delà de ce qu'exigent les réseaux de télécommunications, ont effectivement été obtenues en laboratoire, sur des boucles à recirculation.
Plusieurs phénomènes limitent toutefois l'utilisation de cette technique. La propriété de conservation de la forme du soliton au cours de la propagation n'est théoriquement vérifiée que s'il est seul sur la fibre et, dès que plusieurs solitons se propagent sur la même fibre, ils interagissent entre eux. Cette interaction peut toutefois être maîtrisée dans certaines limites. Par ailleurs, le bruit des amplificateurs optiques introduit une gigue et ces facteurs limitent le débit de la transmission.
Avec les progrès des techniques de transmission « conventionnelles » et l'apparition notamment des systèmes cohérents possédant une énorme puissance de compensation des défauts de transmission, grâce à l'électronique, les perspectives d'application des solitons aux systèmes de télécommunications se sont évanouies.
Cet article explique les bases de la théorie des solitons optiques, présente ce qu'était l'état de l'art à la fin des années 1990 et les résultats qui ont été obtenus à l'époque.
VERSIONS
- Version archivée 1 de août 1999 par Thierry GEORGES
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Solutions pour des transmissions sur des distances infinies
3.1 Robustesse des solitons
Le soliton est l'impulsion naturelle se propageant dans une fibre dont la dispersion chromatique est anormale. Toute impulsion, si elle se propage suffisamment loin se décompose en solitons et en une onde dispersive. Dans un certain domaine d'amplitude, un unique soliton peut émerger de l'impulsion initiale et il existe toujours une amplitude pour laquelle l'énergie dans l'onde dispersive est minimale.
• Considérons l'impulsion A sech (t ) :
-
lorsque l'amplitude A est inférieure à 0,5, toute l'onde se disperse ;
-
pour 0,5 < A < 1,5 (c'est-à-dire sur une plage de 9,5 dB de dynamique), un unique soliton émerge de l'impulsion initiale ; évidemment, l'énergie de l'onde dispersive est nulle pour A = 1 (figure 3).
• Pour une impulsion de forme gaussienne A exp (– t 2/3), un unique soliton est obtenu pour 0,51 < A < 1,54 et l'énergie du continuum est minimisée (moins de 0,5 % de l'énergie de l'impulsion initiale) pour A = 1 (figure 3). Il n'est donc pas utile de réaliser une source à solitons pour transmettre des solitons ; la ligne de transmission transforme elle-même de façon très efficace les impulsions en solitons.
• Finalement, même une impulsion carrée A 1[–2,2](t ) (1[–2,2] étant la fonction égale à 1 pour et 0 ailleurs) se transforme en soliton pour 0,4 < A < 1,2. L'énergie du continuum représente 14 % de l'énergie initiale pour A = 0,73. La transformation de cette impulsion en soliton est illustrée par la figure 4.
Le soliton est donc robuste vis-à-vis de toute déformation temporelle.
De la même manière, toute déformation fréquentielle est corrigée par la propagation. L'effet non linéaire peut créer des fréquences pour reformer le spectre. Par exemple un soliton filtré...
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Solutions pour des transmissions sur des distances infinies
BIBLIOGRAPHIE
-
(1) - RUSSELL (J.S.) - Report on waves. - Report of the fourteenth meeting of the British Association for the Advancement of Science, York, London 1845, Plates XLVII-LVII, p. 311-390, sept. 1844.
-
(2) - GARDNER, GREENE (J.M.), KRUSKAL (M.D.), MIURA (R.M.) - * - Phys. Rev. Lett., 19, p. 1095-1097 (1967).
-
(3) - HASEGAWA (A.), TAPPERT (F.) - Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. - Appl. Phys. Lett., 23, p. 142-144 (1973).
-
(4) - ZAKHAROV (V.E.), SHABAT (A.B.) - Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear fibers. - Sov. Phys. JETP, 34, p. 62-69 (1972).
-
(5) - MITSCHKE (F.M.), MOLLENAUER (L.F.) - Experimental observation of interaction forces between solitons in optical fibres. - Opt. Lett., 12, p. 355 (1987).
-
...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive