Présentation
En anglaisRÉSUMÉ
Cet article donne une revue des systèmes de télécommunications optiques spatiales. Ces systèmes sont envisagés pour certaines applications spatiales comme le transfert de données massif ou encore internet par satellite. L’article décrit les principaux sous-systèmes composant le lien optique, notamment la chaîne de communication, mais aussi la tête optique dont il explique le calcul du gain. La méthodologie pour clore le bilan de liaison pour les liens à faible dynamique est introduite. L’article mentionne ensuite les liens à haute dynamique, principalement due à la turbulence atmosphérique, et les moyens de s’en accommoder. La mise en place d’un lien optique est présentée. Pour finir, l’article discute de la capacité et de la disponibilité de ces systèmes.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article reviews optical space communication systems. These systems are being considered for space applications such as massive data transfer and Internet via satellite. The article describes the optical link main sub-systems, in particular the communication chain, but also the optical head, for which it explains how the gain is calculated. It then introduces the methodology to close the link budget for low-dynamic links. It then mentions high dynamics links, mainly due to atmospheric turbulence, and how to deal with it. The setting up of an optical link is presented. Finally, the article discusses the capacity and availability of these systems.
Auteur(s)
-
David PARRAIN : Architecte système télécommunication optique - Airbus Defence & Space, Toulouse, France
INTRODUCTION
Dans un monde de plus en plus connecté, les exigences en matière de communication ont augmenté de manière exponentielle. La domination des communications optiques dans le domaine terrestre ces dernières décennies s’explique par leurs capacités élevées de transmission de données sur de longues distances. Leur adoption croissante dans le domaine spatial a été motivée par la nécessité conjointe d’accroître les débits tout en réduisant la taille et le coût des systèmes. Les communications optiques spatiales montrent déjà toute leur efficacité sur les liens inter-satellites, notamment grâce à l’avènement des constellations en orbite basse (Space Development Agency (SDA), Starlink) et pour le rapatriement de données en passant par un satellite géosynchrone (European Data Relay Satellite System, EDRS). Les efforts de développements se concentrent maintenant sur l’augmentation des débits et sur la réalisation de liens traversant l’atmosphère, qui ajoute un niveau de complexité supplémentaire.
Les systèmes de télécommunications optiques spatiales possèdent, hormis la promesse de très hauts débits, quelques avantages supplémentaires par rapport aux systèmes radiofréquences (RF) :
-
il n’existe pas de réglementation sur l’utilisation de ces fréquences. Elles sont en effet tellement grandes et les faisceaux tellement étroits que le risque d’interférence avec un autre système est négligeable ;
-
leur discrétion les rend difficiles à espionner et à brouiller, ce qui suscite un vif intérêt pour les forces armées ;
-
leur compacité est plus importante par rapport aux systèmes radiofréquences (à débit équivalent) ;
-
ils réduisent les problématiques de compatibilité électromagnétique au niveau des engins spatiaux.
En revanche, ces systèmes souffrent encore de quelques points durs :
-
la spatialisation des composants terrestres n’est pas toujours aisée du fait des électroniques avancées utilisées ;
-
ils ne fonctionnent quasi exclusivement qu’en lien point-à-point ;
-
ils sont extrêmement sensibles à la couverture nuageuse, ce qui crée un impact fort sur la disponibilité pour certains types de liens ;
-
ils sont plus complexes lorsque la traversée de l’atmosphère turbulente rentre en compte.
Dans cet article, nous explorons en profondeur les principes fondamentaux des communications optiques spatiales, leurs avantages et leurs défis, ainsi que les applications qui émergent grâce à cette technologie. Nous discutons des différents types de liens optiques, des chaînes de communication, des terminaux lasers, des bilans de liaison à faible et haute dynamique. Puis, nous parlons des concepts de capacité et disponibilité.
Le lecteur trouvera en fin d’article un glossaire des termes utilisés.
MOTS-CLÉS
spatial télécommunication optique lien optique terminal optique en espace libre satellite chaîne de communication tête optique haute capacité
KEYWORDS
spatial | optical telecommunication | optical link | terminal | free space optics | satellite | communication chain | optical head | high capacity
VERSIONS
- Version archivée 1 de juin 1987 par Patrick LESNE
- Version archivée 2 de févr. 2001 par Georges OTRIO
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Applications des lasers > Systèmes de télécommunications optiques spatiales > Disponibilité du lien
Accueil > Ressources documentaires > Ingénierie des transports > Systèmes aéronautiques et spatiaux > Astronautique et technologies spatiales > Systèmes de télécommunications optiques spatiales > Disponibilité du lien
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Disponibilité du lien
Le lien optique est dit indisponible à partir du moment où il ne garantit plus le niveau de taux d’erreur paquet demandé pendant une certaine durée (typiquement à partir de quelques secondes sous le seuil). La disponibilité du lien optique est liée soit à la disponibilité des terminaux soit à la disponibilité du canal de propagation.
L’indisponibilité du lien optique est donnée par :
où les indisponibilités listées sont des booléens (figure 20).
7.1 Disponibilité d’un terminal
Le terminal est dit indisponible lorsqu’il n’est plus capable de remplir sa mission ; soit parce qu’il doit se mettre en sécurité pour assurer sa survie, soit parce qu’il ne respecte plus les performances exigées (entraînant l’indisponibilité du lien). La disponibilité du terminal dépend globalement de l’environnement dans lequel il évolue. Certaines situations peuvent s’avérer critiques :
-
avoir le soleil dans un certain cône autour de l’axe optique du télescope : le soleil peut provoquer la destruction ou l’éblouissement de certains capteurs optiques si les rayons arrivent directement sur les puces. Le soleil peut aussi créer des échauffements locaux pouvant perturber les signaux de com (typiquement des erreurs de front d’onde). Il est donc d’usage de définir un angle minimal – nommé angle d’exclusion solaire...
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Disponibilité du lien