Présentation
En anglaisRÉSUMÉ
Cet article décrit les principes électromagnétiques des réseaux de diffraction, puis explique leur intérêt dans les chaînes lasers de forte intensité. Ces chaînes lasers posent de nombreux défis à relever pour améliorer les performances optiques des réseaux et augmenter leur taille et leur résistance au flux laser. Les différentes techniques de fabrication sont détaillées et situées dans un contexte historique. Les mécanismes d’endommagement laser et la métrologie associée sont ensuite détaillés. Les principaux réseaux de diffraction utilisés dans les chaînes lasers en réflexion ou en transmission sont classifiés puis décrits.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article describes the basics and principles of diffraction gratings and explains their utility in high power laser chains. High power lasers present several challenges to improve the optical performance of gratings and increase their size and laser-induced damage thresholds. The different fabrication techniques are detailed and explained in the framework of the history of diffraction gratings. The mechanisms of laser damage and the associated metrology are described. The diffraction gratings mainly used in laser chains in reflection and transmission are classified and described.
Auteur(s)
-
Nicolas BONOD : Chargé de Recherche CNRS - Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
-
Jérôme NÉAUPORT : Ingénieur de recherche - CEA, DAM, CEA-CESTA, Le Barp, France
INTRODUCTION
Un réseau de diffraction est un composant optique obtenu en structurant périodiquement une interface séparant deux matériaux. Cette structuration entraîne une modulation de l’indice de réfraction suivant une ou deux directions du plan de l’interface. Cette modulation périodique de l’interface est à l’origine de la propriété optique la plus remarquable des réseaux de diffraction, que l’on peut résumer très simplement : un faisceau lumineux éclairant le réseau à une incidence donnée est diffracté en faisceaux secondaires réfléchis et/ou transmis suivant plusieurs angles précis. Chacun des faisceaux diffractés correspond à ce que l’on appelle un ordre de diffraction. Le nombre de faisceaux réfléchis et/ou transmis, ainsi que leurs angles associés, peuvent être prédits très simplement avec la loi des réseaux. Cette loi annonce les angles de diffraction en fonction de la période de la modulation, de l’angle d’incidence et de la longueur d’onde. Et c’est précisément cette dernière dépendance, celle de l’angle de diffraction en fonction de la longueur d’onde, qui est à l’origine des nombreuses applications des réseaux. Cette caractéristique entraîne en effet une dispersion des faisceaux diffractés. En particulier, un faisceau lumineux possédant un contenu spectral sera diffracté, pour chaque ordre de diffraction donné, avec des angles différents en fonction de la longueur d’onde. Il sera alors possible de mesurer l’intensité spectrale du faisceau. Cette propriété dispersive des réseaux de diffraction les amène à être couramment utilisés en spectroscopie pour des applications dans les domaines du spatial, des biosenseurs, ou des capteurs.
La période du réseau étant de l’ordre de la longueur d’onde, la fabrication de ces composants optiques requiert un contrôle sub-micrométrique de la gravure. Le premier réseau a été fabriqué au XVIIIe siècle et les techniques de fabrication n’ont depuis jamais cessé de progresser. Ces dernières ont notamment bénéficié dans les années 1960 de l’invention du laser. La mise en forme de faisceaux monochromatiques cohérents a en effet conduit au développement de la photolithographie. Cette technique interférométrique a permis un progrès considérable dans le contrôle de la période de gravure sur de grandes surfaces. Si l’avènement de la photolithographie par laser a marqué un tournant technologique pour les réseaux de diffraction, l’histoire montre que les réseaux de diffraction ont à leur tour révolutionné le domaine des lasers à partir des années 1980, plus précisément le domaine des lasers de haute intensité.
Ces lasers font appel à la technique d’amplification par dérive de fréquences, technique proposée en 1984 pour contourner le problème lié à l’endommagement des cristaux amplificateurs par l’impulsion. L’impulsion est tout d’abord étirée temporellement avant d’être comprimée par un ou plusieurs réseaux de diffraction. Le dimensionnement de ces faisceaux lasers de forte intensité conduit à fabriquer des réseaux de très grandes tailles, c’est-à-dire des réseaux fabriqués à l’échelle du décimètre, voire du mètre. Ces tailles sont très importantes, spécialement si l’on se réfère à l’échelle sub-micrométrique de la période de modulation. Cependant, ces faisceaux lasers poussent également les réseaux de diffraction vers leurs limites en termes de performances optiques, notamment avec des recherches d’efficacité maximale et de tolérance spectrale pour un ordre diffractif donné. Combiner ces efficacités de diffraction d’un ordre approchant les 100 % sur une gamme de longueurs d’onde pouvant aller de quelques nanomètres à plus d’une centaine de nanomètres, et ce, sur toute la surface du réseau, soulève de nombreux défis technologiques.
Cet article décrit tout d’abord les principes électromagnétiques des réseaux de diffraction et explique leur principe de fonctionnement (loi des réseaux, dispersion, ordres de propagation…). Il présente ensuite les méthodes de fabrication les plus couramment utilisées et les différents types de réseaux employés dans les chaînes lasers.
L’objectif de cet article est également de détailler l’ensemble des défis technologiques posés lors de la conception de réseaux par les chaînes laser de haute intensité pour répondre aux contraintes particulièrement exigeantes des efficacités optiques, de résistance au flux laser, de taille… Ces différents développements réalisés pour répondre à des contraintes modernes montrent l’importance de ces composants optiques majeurs que sont les réseaux de diffraction.
Le lecteur trouvera en fin d’article un tableau des sigles et symboles utilisés.
MOTS-CLÉS
réseaux de diffraction lasers de puissance amplification par dérive de fréquences dispersion spectrale endommagement laser
KEYWORDS
diffraction gratings | high power laser | chirped pulse amplification | spectral dispersion | laser damage
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Conclusion
Le contrôle des champs électromagnétiques à l’échelle de longueur d’onde est un enjeu crucial. À ce titre, les réseaux de diffraction peuvent être considérés comme les premiers composants optiques de la nanophotonique, thématique de recherche et développement dont l’objectif est de contrôler la lumière à des échelles sub-microniques, voire nanométriques.
Les réseaux de diffraction ont ouvert le chemin à la fin du XXe siècle au développement des cristaux photoniques, puis des métamatériaux. Les métamatériaux sont des matériaux structurés à une échelle largement inférieure à la longueur d’onde afin d’étendre le choix des matériaux optiques avec des indices de réfraction négatifs ou proches de zéro. À titre d’illustration, une couche métallique planaire réfléchissant très bien la lumière peut être rendue totalement absorbante avec une structuration sub-longueur d’onde . Dans ce contexte, les travaux de Wood sur la réflectivité résonnante de la lumière sur des réseaux métalliques sont précurseurs. Ses travaux pionniers ont inspiré une série d’études tout au long du XXe siècle sur l’interaction résonnante entre la lumière et des matériaux métalliques structurés.
Nous réalisons aujourd’hui combien les travaux de Rittenhouse et Fraunhofer étaient pionniers. Ils sont parvenus à structurer la matière à une échelle de l’ordre de la longueur d’onde pour modifier la propagation de la lumière. Ils ont ouvert la voie à la fabrication de réseaux de diffraction toujours plus performants, mais plus généralement la voie vers les nanosciences. Les avancées des réseaux de diffraction et des nanotechnologies ont abouti à la réalisation des cristaux photoniques à la fin des années 1980 et des métamatériaux à...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - BOTTEN (L.), CADILHAC (M.), DERRICK (G.), MAYSTRE (D.), McPHEDRAN (R.), NEVIÈRE (M.), VINCENT (P.), PETIT (R.) - Electromagnetic Theory of Gratings, - Vol. 22 of Topics in Current Physics (Springer, 1980).
-
(2) - PETIT (R.) - Ondes Électromagnétiques en Radioélectricité et en Optique : Lois Générales, Calcul du Champ à partir des Sources, Propagation Libre et Guidée, Cavités, Réflexion, Réfraction, Diffraction, - Utilisation des Distributions en Électromagnétisme (Masson, 1989).
-
(3) - LOEWEN (E.G.), POPOV (E.) - - Diffraction Gratings and Applications (CRC Press, 1997).
-
(4) - CHEN (C.G.), KONKOLA (P.T.), HEILMANN (R.K.), JOO (C.), SCHATTENBURG (M.L.) - Nanometer-accurate grating fabrication with scanning beam interference lithography, - Proc. SPIE 4936, 126-134 (2002).
-
(5) - JITSUNO (T.), MOTOKOSHI (S.), OKAMOTO (T.), MIKAMI (T.), SMITH (D.), SCHATTENBURG (M.L.), KITAMURA (H.), MATSUO (H.), KAWASAKI (T.), KONDO(K.), SHIRAGA (H.), NAKATA (Y.), HABARA (H.), TSUBAKIMOTO (K.),...
DANS NOS BASES DOCUMENTAIRES
-
Lasers à impulsions ultrabrèves : applications,
-
Génération d’impulsions lasers ultracourtes jusqu’à la femtoseconde,
SPIE, Photonics West, LASE
SPIE, Laser Damage
SPIE, Pacific RIM
International Conference on Extreme Light (ICEL)
Bi annual Conferences of the International Committee on Ultrahigh Intensity Lasers
HAUT DE PAGE
NF ISO 10110-7 - 2017 - Optique et photonique : Indications sur les dessins pour éléments et systèmes optiques – Tolérances d’imperfection de surface
NF ISO 11254-1 - 2011 - Lasers et équipements associés aux lasers – Méthodes d’essai du seuil d’endommagement provoqué par laser – Définitions et principes de base
NF ISO 11254-2 - 2011 - Lasers et équipements associés aux lasers – Méthodes d’essai du seuil d’endommagement provoqué par laser – Détermination du seuil
MIL – O – 13830A - (1963) - Specifications militaires : composants optiques pour instruments de contrôle du feu ; specification génrale régissant la fabrication, l’assemblage et l’inspection
HAUT DE PAGE
Multilayer dielectric diffraction gratings, Michael D. Perry, Jerald A. Britten,...
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive