Présentation
En anglaisRÉSUMÉ
L’objectif de cet article est de présenter le principe, les performances et les technologies associés aux lasers accordables. La définition de laser est prise ici au sens des oscillateurs optiques, capables de générer de la lumière à partir d’un milieu amplificateur optique placé dans une cavité. Après une description des différents milieux amplificateurs (milieux laser et non linéaires) et de leur largeur spectrale, nous décrivons les principes de l’accordabilité d’un oscillateur laser qui sont basés sur les effets de filtrage dans la cavité. Nous présentons ensuite différents filtres spectraux qui permettent d’accorder le laser lorsqu’ils sont insérés dans la cavité. Nous donnons enfin un exemple de laser accordable : la diode laser, et présentons les domaines d’application des lasers accordables.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The objective of this article is aimed at presenting the principle, performances and technologies associated to tunable lasers. The term "laser" is here defined as optical oscillators which are able to generate light from an optical amplifying medium placed into a cavity. After initially presenting the various amplifying mediums (laser and non-linear media)and their spectral width, we proceed by describing the tuning principles of a laser oscillator which are based upon the filtering effects within the cavity. We then go on to describing various spectral filters which allow the tuning of the laser when inserted into the cavity. Finally, we provide an example of a tunable laser i.e. the laser diode as well as the various areas of application regarding tunable lasers.
Auteur(s)
-
François BALEMBOIS : Professeur des universités à l'Institut d'optique
INTRODUCTION
On a souvent tendance à associer le terme de « lasers accordables » aux milieux laser dont la largeur spectrale dépasse plusieurs dizaines de nanomètres (quelques THz en fréquence). L'accordabilité peut prendre cependant une définition plus générale qui indique la capacité d'un oscillateur optique à changer sa longueur d'onde d'émission. Selon la nature des milieux amplificateurs et le type de dispositifs mis en place pour contrôler le spectre, la gamme spectrale peut s'étendre de quelques Hz à une centaine de THz. L'accordabilité peut se faire par saut ou de façon continue. Elle peut être réalisée de façon définitive ou alors donner au laser une certaine agilité en fréquence. Tous les milieux laser sont-ils « accordables » ? On peut se poser la question pour des atomes, des molécules ou des ions dont les diagrammes d'énergie sont simples avec des niveaux quantifiés parfaitement définis, correspondant donc à des longueurs d'onde discrètes. En fait, les niveaux sont toujours élargis par une multitude d'effets physiques dont le plus fondamental est la durée de vie des niveaux impliquant un élargissement spectral par transformée de Fourier. Tous les milieux amplificateurs de lumière utilisant l'émission stimulée sont donc accordables, il faut simplement regarder dans quelle mesure.
On peut même aller plus loin en utilisant des milieux qui ne sont pas basés sur l'émission stimulée mais sur des effets non linéaires. Avec des cristaux non linéaires d'ordre 2, on peut réaliser des oscillateurs paramétriques optiques capables de concurrencer voire de surpasser les sources accordables basées sur l'émission stimulée. En utilisant l'effet non linéaire d'ordre 3 dans des fibres photoniques, on peut générer un continuum de lumière sur une très grande plage de longueurs d'onde et le filtrer pour obtenir une lumière accordable.
L'objet de cet article est de faire le point sur les principes et les performances des « lasers accordables » pris dans le sens le plus général. Le paragraphe 1 décrit les milieux amplificateurs accordables, lasers et non linéaires, en donnant l'origine physique de la largeur des spectres suivant les milieux considérés. Le paragraphe 2 donne les grands principes de l'accordabilité qui est réalisée dans la très grande majorité des cas à partir d'une cavité optique contenant le milieu amplificateur de lumière. Une méthode très courante pour accorder un laser est d'insérer un filtre spectral à l'intérieur de la cavité, c'est pourquoi le paragraphe 3 donne des exemples de filtres spectraux utilisés dans ce but. Le paragraphe 4 donne un exemple de laser accordable : la diode laser. Le paragraphe 5 présente les domaines d'application des lasers accordables.
KEYWORDS
laser | tunable laser | non linear optics | optical cavity | spectral filter
VERSIONS
- Version archivée 1 de sept. 1989 par Gilles COLÉOU
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Milieux amplificateurs accordables
Un milieu amplificateur accordable présente par définition une certaine largeur spectrale de son gain en fonction de la fréquence. Les oscillateurs optiques utilisent deux types de milieux amplificateurs : soit les milieux laser, soit les milieux non linéaires. Les principes physiques étant très différents, ils seront étudiés dans deux sous-parties.
1.1 Milieux amplificateurs utilisant l'émission stimulée
Les éléments dont on considère les niveaux d'énergie peuvent être des atomes indépendants (cas des gaz comme le néon), des molécules sous forme gazeuse ou dissoutes dans un solvant (cas des colorants), des ions piégés dans des matrices cristallines ou vitreuses ou, enfin, des paires électrons-trous dans les semi-conducteurs.
Si les niveaux sont multiples et bien séparés en énergie, le spectre d'émission sera un spectre de raies. L'accordabilité du laser se fera donc par saut.
On peut citer les exemples du laser hélium-néon qui peut émettre sur de multiples raies dans le visible et l'infrarouge (543,3 nm, 632,8 nm, 1,15 μm, 3,39 μm pour les principales), du laser à CO2 avec une émission sur une multitude de raies vers 9,6 μm et 10,6 μm, ou du Nd:YAG avec une émission sur plus de 20 raies entre 869 et 1 444 nm.
Les raies d'émission ont toujours une certaine largeur et elles peuvent même être très larges dans certains cas. On a alors un spectre d'émission continu qui permettra une accordabilité continue du laser : ce qui est souvent l'objectif recherché. Le but de cette partie est de donner les origines physiques des élargissements spectraux que l'on observe dans les milieux amplificateurs.
La grandeur pertinente pour tenir compte de l'évolution du gain du milieu amplificateur en fonction de la fréquence ν est la section efficace notée σ (ν ). Elle est reliée au profil de raie (ou forme de raie), noté F (ν ) par la formule suivante :
avec :
- c :
- vitesse de la lumière dans le vide,
- τ :
- durée de vie du niveau d'énergie,
...
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Milieux amplificateurs accordables
BIBLIOGRAPHIE
-
(1) - SALEH (B.E.A.), TEICH (M.C.) - Fundamentals of photonics. - Wiley series pures and applied optics, GOODMAN (J.W.) Editor, p. 444-446 (1991).
-
(2) - DELSART (C.) - Laser et optique non linéaire. - Physique LMD, Ellipses, p. 111 (2008).
-
(3) - MOULTON (P.F.) - Spectroscopic and laser characteristics of Ti:Al2O3 . - J. Opt. Soc. Am., B, 3, p. 125-133 (1986).
-
(4) - LIU (H.), SPENCE (D.J.), COUTTS (D.W.), SATO (H.), FUKUDA (T.) - Broadly tunable ultraviolet miniature cerium-doped LiLuF lasers. - Opt. Express,16, p. 2226-2231 (2008).
-
(5) - EHRLICH (D.J.), MOULTON (P.F.), OSGOOD (R.M.Jr) - Ultraviolet solid-state Ce:YLF laser at 325 nm. - Opt. Lett., 4, p. 184-186 (1979).
-
(6) - SALEH (B.E.A.), TEICH (M.C.) - Fundamentals of Photonics. - Wiley series pure...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Une liste d'entreprises commercialisant des lasers accordables peut être trouvée sur : http://www.directindustry.com/industrial-manufacturer/tunable-laser-79117.html
La liste suivante n'est pas exhaustive, elle donne quelques pistes de fournisseurs.
Lasers accordables : saphir dopé au titane
– COHERENT http://www.coherent.com/
– Spectra-physics (a Newport Corporation Brand) http://www.newport.com/
– Continuum http://www.continuumlasers.com/
Lasers accordables : lasers à colorant
– Quantel http://www.quantel.fr/
– Sirah laser und plasma technik http://www.sirah.com/
– Laser science http://www.laserscience.in/
– Exciton http://www.exciton.com
Diodes laser accordables
– Toptica http://www.toptica.com/
– New Focus (a Newport Corporation Brand) http://www.newport.com/
– Sacher lasertechnik http://www.sacher-laser.com/
– Daylight solutions (lasers à cascade quantique) http://www.daylightsolutions.com/
Oscillateurs et amplificateurs paramétriques optiques
– Ekspla http://www.ekspla.com/
– Lightconversion...
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive