Présentation

Article

1 - DIODES LASER

2 - BOÎTES QUANTIQUES AUTOASSEMBLÉES

3 - RÔLE DU GAIN

4 - LASERS À BOÎTES QUANTIQUES FABRIQUÉS PAR MOCVD

5 - CONCLUSION

Article de référence | Réf : NM2050 v1

Boîtes quantiques autoassemblées
Lasers à boîtes quantiques autoassemblées d'InAs/GaAs

Auteur(s) : Denis GUIMARD, Yasuhiko ARAKAWA

Date de publication : 10 janv. 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Les boîtes quantiques autoassemblées sont des nanostructures dans lesquelles l’électron est confiné dans les trois directions de l’espace. Les caractéristiques de modulation et la densité d’états discrète qui en résultent permettent d’envisager l’élaboration de diodes laser pour les télécommunications optiques avec des performances supérieures à celles des diodes laser à puits quantiques, commercialisées actuellement. Les procédés de fabrication en application industrielle seraient en plus accessibles à bas coût.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La réalisation de boîtes quantiques autoassemblées, nanostructures dans lesquelles l’électron est confiné dans les trois directions de l’espace, et la discrétisation des états électroniques qui en résulte permettent d’envisager l’élaboration de diodes laser pour les télécommunications optiques avec des caractéristiques supérieures à celles des diodes laser à puits quantiques, commercialisées actuellement.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-nm2050


Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

2. Boîtes quantiques autoassemblées

2.1 Effet du confinement électronique sur la densité d’états

Jusqu’à la moitié des années 1980, les lasers avec une zone active épaisse de plusieurs micromètres dominaient le marché. Mais ce n’est qu’avec l’introduction des diodes laser à puits quantiques et la forte réduction des densités de courant de seuil, de l’ordre de 50 A/cm 2 , obtenue en premier par Z. I. Alferov, prix Nobel de physique en 2000, que le marché des diodes laser explosa. En 1982, Y. Arakawa et H. Sakaki, de l’université de Tokyo, étudièrent l’effet de confinement de la zone active dans les trois dimensions de l’espace . Pour un laser à boîtes quantiques, ils prédirent une très faible densité de courant de seuil et une complète indépendance des caractéristiques laser vis-à-vis de la température (i.e. T0 infinie).

Le paramètre clé est l’effet du confinement sur la densité d’états qui se produit lorsque la dimension de la zone active est du même ordre que la longueur d’onde de De Broglie de l’électron (figure 4). Lorsque le confinement du mouvement de l’électron a lieu dans une direction (cas du puit quantique) ou deux directions (cas du fil quantique), des sous-bandes apparaissent. Dans le cas de la boîte quantique où le confinement a lieu dans les trois directions de l’espace, la densité d’états ρ(E) devient complètement quantifiée, avec une série de niveaux discrets, de manière similaire à celle d’un atome. D’ailleurs, les boîtes quantiques sont souvent décrites comme des « atomes artificiels ». A température ambiante, la dimension typique à laquelle le confinement électronique affecte la densité d’états est de l’ordre de 20 nm pour GaAs.

Aujourd’hui, deux approches sont poursuivies afin de réaliser des diodes laser émettant à 1,3 µm sur substrat de GaAs : celle à base de puits quantiques de GaInNAs et celle qui utilise des boîtes quantiques d’InAs sur substrat de GaAs (InAs/GaAs). Cependant, c’est la seconde approche qui présente les meilleures caractéristiques et perspectives. A 1,3 µm, les valeurs records publiées pour J th sont comprises entre 10 et 30 A/cm2  , qui sont les plus faibles valeurs obtenues pour un laser émettant par la tranche, puits et boîtes...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Boîtes quantiques autoassemblées
Sommaire
Sommaire

Livres

SHCHUKIN (V.A.) - LEDENTSOV (N.N.) - BIMBERG (D.) - Epitaxy of Nanostructures - Springer, serie : Nanoscience and Technology (2004).

USTINOV (V.M.) - ALFEROV (Z.I.) - LEDENTSOV (N.N.) - BIMBERG (D.) - GOSELE (U.) - CRYST (J.) - * - . – Growth 175-176, 689-695 (1997).

HAUT DE PAGE

2 Organismes et sites internet

Optoelectronics Industry Development Association (OIDA)

  http://www.oida.org/

Innolume

  http://www.innolume.com/

QD Laser Inc.

  http://www.qdlaser.com/

Compound Semiconductor

  http://www.compoundsemiconductor.net/

Laser Focus World

  http://lfw.pennnet.com/

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS