Présentation

Article

1 - DÉFINITIONS

2 - GRANDEURS RADIOMÉTRIQUES ET PHOTOMÉTRIQUES

  • 2.1 - Flux
  • 2.2 - Étendue géométrique
  • 2.3 - Luminance
  • 2.4 - Facteur de transmission
  • 2.5 - Éclairement
  • 2.6 - Exitance
  • 2.7 - Intensité
  • 2.8 - Quantité de lumière
  • 2.9 - Exposition

3 - UNITÉS

4 - PROPAGATION. SYSTÈMES OPTIQUES. SOURCES SECONDAIRES

  • 4.1 - Réfraction, conservation de l’étendue et de la luminance
  • 4.2 - Diaphragmation
  • 4.3 - Éclairement derrière un diaphragme circulaire
  • 4.4 - Diffuseurs parfait et orthotropes. Facteur de luminance
  • 4.5 - Loi de Bouguer
  • 4.6 - Exemples

5 - QUALITÉ DU RAYONNEMENT

6 - MILIEUX. SURFACES. SOURCES. DÉTECTEURS

  • 6.1 - Milieux et surfaces
  • 6.2 - Sources
  • 6.3 - Détecteurs

7 - PROBLÈMES ET MÉTHODES DE LA PHOTOMÉTRIE

8 - INSTRUMENTS

Article de référence | Réf : R6410 v1

Grandeurs radiométriques et photométriques
Radiométrie. Photométrie

Auteur(s) : François DESVIGNES

Date de publication : 10 avr. 1992

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • François DESVIGNES : Ingénieur de l’École Supérieure d’Optique et du Conservatoire National des Arts et Métiers - Ancien Directeur à la Société Anonyme d’Études et Réalisations Nucléaires (SODERN)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Cet article ne traite que les aspects métrologiques de la caractérisation des rayonnements optiques, des sources, de la propagation dans les milieux, des propriétés des échantillons et objets passifs, et des détecteurs. Pour ce qui concerne la description de la structure et des propriétés des sources, milieux et détecteurs, le lecteur trouvera plusieurs références dans la bibliographie de la fiche documentaire .

On verra que la photométrie, ce mot étant pris au sens large, est un art rendu difficile par la complexité des distributions spatiale et spectrale du rayonnement. Pour cette raison, les métrologues ont été conduits à définir un nombre relativement important de grandeurs que l’on peut mesurer sans trop de difficultés, et dont on verra l’intérêt. C’est aussi cette complexité qui fait que la précision des mesures photométriques paraît souvent médiocre : une incertitude relative de 1 % correspond à une bonne précision courante, 10 – 4 est tout à fait exceptionnel.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-r6410


Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

2. Grandeurs radiométriques et photométriques

2.1 Flux

Le flux Φ est la valeur instantanée d’un débit de rayonnement. Ce peut être la totalité du rayonnement émis par une source, ou seulement celui qui est transporté par le faisceau qui sort d’un instrument, ou encore celui qui est reçu par un détecteur.

Le flux peut être mesuré par la puissance (en watts : système d’unités énergétiques) qu’il transporte, ou par le nombre de photons qu’il débite par unité de temps (en s–1 : système d’unités photoniques).

HAUT DE PAGE

2.2 Étendue géométrique

Soit une surface source S qui éclaire une surface réceptrice R ; elles sont séparées par un milieu homogène (propagation rectiligne) ; considérons, sur des régions de ces surfaces en regard l’une de l’autre, des petits éléments dont les aires sont dA s et dA r (figure 1). Si D est la distance entre ces deux éléments, dA r est vue de dAs sous l’angle solide d Ω s :

dA s est vue de dA r sous l’angle solide :

dA s et dA r définissent l’étendue géométrique d2G :

( 2 )

On remarquera la symétrie de cette relation, vue de la source ou du récepteur.

L’étendue géométrique totale définie par la source et le récepteur est la somme de telles étendues élémentaires, c’est-à-dire :

...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Grandeurs radiométriques et photométriques
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BOYD (R.W.) -   Radiometry and the detection of optical radiation.  -  Wiley, New York (1983).

  • (2) - BURRUS (J.) & al -   La photométrie en éclairage.  -  Sté Édition Lux, Paris (1991).

  • (3) - CAYLESS (M.A.), MARSDEN (A.M.) -   Lamps and lighting (3e édition).  -  Edward Arnold, London (1983).

  • (4) - DESVIGNES (F.) -   Détection et détecteurs de rayonnement.  -  Masson, Paris (1987).

  • (5) - DESVIGNES (F.) -   Rayonnements optiques, radiométrie, photométrie.  -  Masson, Paris (1991).

  • (6) - ELBIG (E.) -   Lichtmesstechnik.  -  Geest & Portig, Leipzig (1977).

  • (7)...

NORMES

  • Vocabulaire électronique. Chapitre 845 : Éclairage º [CEI 50 (845)]. - NF C 01-845 - 3-89

1 Constructeurs. Fournisseurs

Constructeurs

Sources étalons pour la radiométrie :18, 19, 20

Sources étalons pour la photométrie :18, 19, 20

Détecteurs pour la radiométrie : thermiques :5, 12, 13, 17

Détecteurs pour la radiométrie : photoélectriques :2, 4, 6, 7, 27

Détecteurs pour la photométrie :19

Radiomètres (flux, éclairement énergétique) :8, 14, 21, 22, 26, 28

Luxmètres (éclairement lumineux) :1, 3, 9, 11, 15, 21

Luminancemètres photoélectriques :1, 10, 15, 21, 25

Sphères intégrantes :10, 17, 21

Goniophotomètres :21

Réflectomètres :11, 21, 24

Filtres optiques :16, 18, 23

1 Bruel & Kjaer.

2 Centronic Ltd : représentant : Photonetics.

3 Chauvin-Arnoux.

4 EG & G Photon Devices : représentant : RMP.

5 Eppeley Laboratory.

6 Epitaxx.

7 Hamamatsu Photonics KK ; représentant : Hamamatsu Photonics France.

8 Hewlett-Packard.

9 International Light : représentant : Ealing.

10 Labsphere ; représentant : Oriel Sarl.

11 Lange-Bruno ; représentant : Chimilab Essor.

12 Laser Instrumentation ; représentant : Oriel Sarl.

13 Laser Precision Corp.

14 Li-Cor Inc ; représentant : Cunow.

15 Minolta.

16 MTO (Métallisations et Traitements Optiques).

17 Ophir ; représentant : Optilas.

18 Oriel Corporation ; représentant : Optilas.

19 Osram ; représentant : Cunow.

20 Polaron Special Lamps Division.

21 PRC Krochmann GmbH.

22 Schlumberger Technologies.

23 Schott Glaswerke ; représentant :...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS