Présentation

Article

1 - RAPPELS DE RADIOMÉTRIE

2 - RAYONNEMENT THERMIQUE

3 - SOURCES À ÉMISSION SECONDAIRE

4 - SOURCES PAR LUMINESCENCE

Article de référence | Réf : E4010 v2

Sources par luminescence
Radiométrie et sources non cohérentes

Auteur(s) : Jean-Louis MEYZONNETTE

Date de publication : 10 sept. 1995

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Jean-Louis MEYZONNETTE : Ingénieur de l’École Supérieure d’Optique - Professeur à l’École Supérieure d’Optique

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

avec la collaboration de Herbert RUNCIMAN pour la rédaction du paragraphe 1.2

La performance d’un système optronique dépend des nombreux paramètres et composants qui, de la source à l’utilisateur, constituent ce qu’il est convenu d’appeler la chaîne optronique, et elle traduit en général la capacité du système à recueillir, puis à exploiter au mieux le signal recherché. Pour cela, la conception du système doit s’appuyer sur une bonne connaissance de chacun des élements de la chaîne, et en particulier sur celle du maillon initial, la source optique qui est à l’origine de l’information.

Tout rayonnement optique résulte de la transformation en énergie lumineuse d’énergies diverses (thermique, électrique, électronique, mécanique, chimique, nucléaire, voire optique). La propagation de cette énergie lumineuse s’interprète soit (théorie ondulatoire) sous la forme d’ondes électromagnétiques de longueurs d’onde comprises entre quelques centièmes et quelques centaines de micromètres, soit (théorie corpusculaire) par le mouvement de particules, les photons, dont l’énergie individuelle est comprise entre 10 –22 et 10 –17 J.

Dans de nombreuses applications, telles que l’observation, l’imagerie, la photographie, l’astronomie, etc., la source optique émet de façon autonome, sans aucune intervention du système optronique (système dit passif ). Dans d’autres, telles que les télécommunications optiques, le système, dit actif, dispose de sa propre source, artificielle, pour créer, modifier ou amplifier le phénomène à exploiter. Dans tous les cas, il est indispensable au concepteur de connaître et /ou de spécifier au mieux les caractéristiques du rayonnement à détecter, car ce sont elles qui conditionnent l’ensemble de la chaîne optronique.

On rappelle tout d’abord les lois fondamentales de la radiométrie, puis on présente les principales familles de sources conventionnelles : par incandescence (ou thermiques), puis par luminescence.

Les sources lasers sont traitées dans un article spécifique de la rubrique.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-e4010


Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Sources par luminescence

4.1 Définition

Toute élévation de température d’un corps en accroît le rayonnement (loi de Stefan) et en décale le spectre vers les courtes longueurs d’onde (loi du déplacement de Wien). Si l’on parvient au moyen d’une excitation sélective à faire passer les atomes d’un matériau à des niveaux énergétiques supérieurs sans modifier de façon notable sa température, le retour de ces atomes au niveau fondamental peut s’accompagner (cas de retours radiatifs ) d’une émission de photons, dite émission par luminescence.

La répartition des électrons dans les divers niveaux énergétiques du milieu n’est plus alors dictée par la statistique de Boltzmann, qui prévaut à l’équilibre thermique, et l’énergie des photons émis par luminescence entre les deux niveaux d’énergie E 1 et E 2 est égale à :

h ν = E2 – E 1

Il existe diverses façons d’exciter sélectivement les atomes et molécules d’un milieu pour obtenir un rayonnement par luminescence : l’électroluminescence (excitation électrique par bombardement et collision des atomes par électrons ou ions extérieurs, ou par injection de charges), la fluorescence (absorption d’un faisceau d’énergie photonique adaptée à la différence énergétique entre niveaux du milieu), la chimiluminescence, la triboluminescence, etc.

La luminescence s’obtient dans les gaz, les solides et les liquides.

HAUT DE PAGE

4.2 Luminescence dans les gaz

HAUT DE PAGE

4.2.1 Généralités

Les premiers rayonnements par luminescence ont été obtenus dans des milieux gazeux, en appliquant une différence de potentiel entre électrodes placées dans un gaz ; en fonction de la densité de courant obtenue, deux types de rayonnement peuvent se produire.

  • Le premier régime, dit à...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Sources par luminescence
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - DESVIGNES (F.) -   Rayonnements optiques, radiométrie, photométrie  -  . 1997, Masson.

  • (2) - GRUM (F.), BECHERER (R.J.) -   Optical radiation measurements  -  . Vol. 1 : Radiometry. 1979, Academic Press, New York.

  • (3) - BOYD (R.W.) -   Radiometry and the detection of optical radiation  -  . 1983, Wiley, New York.

  • (4) - GAUSSORGUES (G.) -   La thermographie infrarouge  -  . Technique et documentation, 4e édition, 1999, Paris.

  • (5) -   *  -  RCA Engineers : Electrooptic Handbook. 1978, RCA Corporation.

  • (6) - DESVIGNES (F.) -   Radiométrie, photométrie  -  . Techniques de l’Ingénieur, [R 6 410], Traité Mesures et contrôle, 1992.

  • ...

NORMES

  • Vocabulaire électrotechnique. Chapitre 845 : Éclairage [CEI 60050 (845)]. - NF C 01-845 - 3.89

1 Constructeurs. Fournisseurs

(liste non exhaustive)

HAUT DE PAGE

1.1 Sources étalons, corps noirs

HGH Systèmes Infrarouges

Osram

HAUT DE PAGE

1.2 Radiomètres, luminancemètres

Barnes Engineering

Perkin Elmer Optoelectronics (représentant : Polytec P.I. SA)

Hewlett-Packard

Li Cor Biosciences (représentant : ScienceTec)

Minolta

Ophir Optronics (représentant : BFI Optilas)

Photo Research (représentant : BFI Optilas)

HAUT DE PAGE

1.3 Sphères intégrantes

Labsphere (représentant : Lot-Oriel)

Ophir Optronics (représentant : BFI Optilas)

HAUT DE PAGE

1.4 Luxmètres

Brüel et Kjaer

Chauvin-Arnoux

International Light (représentant : BFI Optilas)

Minolta

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS