Présentation
RÉSUMÉ
La couleur est envisagée dans cet article sous l'aspect physique et physico-chimique du terme, afin d'aborder l'interaction lumière-matière et de préciser la notion d'apparence visuelle. Cette interaction participe à la stimulation du système visuel et fait ainsi appel à de nombreux champs de l'optique. La notion fondamentale de fonction dielectrique complexe est largement explicitée ici tant elle est omniprésente dans les phénomènes fondamentaux d'interaction lumière-matière et les mesurages macroscopiques. Cette fonction sert de clé pour appréhender les différentes notions que sont le tristimulus, la réfraction complexe, la dispersion ou la diffusion de la lumière.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Patrick CALLET : Chercheur associé - CAOR-Centre de robotique de Mines-ParisTech, PSL-Research University - Président du Centre français de la couleur - Vice-président du Geste d’Or Laboratoire MICS, CentraleSupélec, Université Paris-Saclay, École Centrale Paris, Châtenay-Malabry, France
INTRODUCTION
Si le mot couleur renvoie d’emblée à des notions très polysémiques, il n’est abordé dans ces pages que sous un seul aspect de ce qui fait l’interaction lumière-matière, celui de la physique. La colorimétrie classique a abondamment défini les grandeurs et les normes permettant à tout praticien, qu’il soit concepteur, coloriste, formulateur, ingénieur ou chercheur des secteurs académiques ou de l’industrie, de pouvoir échanger des données concernant l’apparence visuelle (comme la chromaticité et le brillant par exemple) des matériaux ou des systèmes d’éclairage. La structure internationale la plus importante, fondée sur une initiative française est la Commission Internationale de l’Éclairage (CIE) [R 86]. D’autres organismes de normalisation, telle l’AFNOR, définissent des règles d’usage et précisent le vocabulaire de la colorimétrie appliquée. Notre propos ici concerne les phénomènes fondamentaux qui sont à l’origine de ce que peut mesurer un instrument : des rayonnements. Ainsi, nous supposons fixé un observateur colorimétrique de référence défini par la CIE et concentrons notre attention sur les modèles physiques, physico-chimiques, « exacts » ou phénoménologiques employés pour décrire cette interaction lumière-matière. Elle participe à la stimulation du système visuel en tant que cause externe première et fait appel à des connaissances issues des sciences fondamentales, principalement de nombreux champs de l’optique. Nous mettons en évidence l’importance capitale de la notion de fonction diélectrique complexe ou celle d’indice de réfraction complexe [R 6 470] en raison de son omniprésence dans tous les phénomènes lorsqu’il s’agit de couleur et plus généralement d’apparence visuelle . Cette notion de fonction délectrique complexe assure alors le lien entre les phénomènes fondamentaux de l’interacton lumière-matière, causes profondes relevant de l’optique et de l’échelle dimensionnelle de la longueur d’onde, et les mesurages macro-scopiques qu’effectuent nos instruments ou tout simplement ce que nos yeux reçoivent. Armés de cette notion fondamentale nous exposons le cheminement qui conduit du simple au complexe, de la transparence à la translucidité puis à l’opacité, de la dispersion de la lumière à la diffusion simple puis multiple.
VERSIONS
- Version archivée 1 de janv. 2004 par Patrick CALLET
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Mesures - Analyses > Techniques d'analyse > La science au service de l'art et du patrimoine > Couleur et apparence visuelle - Transparent, translucide, opaque > Annexes
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Formulation > Peintures et colorants > Couleur et apparence visuelle - Transparent, translucide, opaque > Annexes
Accueil > Ressources documentaires > Sciences fondamentales > Physique Chimie > Optique physique > Couleur et apparence visuelle - Transparent, translucide, opaque > Annexes
Cet article fait partie de l’offre
Optique Photonique
(222 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Annexes
7.1 Transparence et dispersion de la lumière
La figure 16 représente comparativement le phénomène de dispersion de la lumière par deux verres et comparé au diamant, carbone élémentaire dont le pouvoir dispersif est notoire. Il s’agit de la même scène 3D calculée 3 fois pour des matériaux différents, le même observateur, le même point d’observation, les mêmes illuminants en lumière naturelle, le même état de surface, le même décor neutre. Calcul effectué par Virtuelium (nom de notre logiciel libre de synthèse d’image, spectral, parallélisé) sur une architecture parallèle grâce à MPI (Message Passing Interface, bibliothèque de calcul parallèle) de petites machines. Les données pour le calcul spectral sont très précisémment celles tracées à la figure 17 pour un échantillonnage au pas de 5 nm sur l’intervalle visible [380 ; 780] nm de longueurs d’onde. On remarque aisément la tache focale rouge ainsi que l’emplacement et la forme des zones irisées bien différentes sur les 3 images de la figure 16.
Ainsi, les aberrations chromatiques provenant de la dispersion de la lumière sont considérées comme une anomalie à éliminer ou au moins à réduire lorsqu’il s’agit de construire des systèmes optiques pour la photographie par exemple et sont au contraire exploitées comme telles pour mesurer de faibles épaisseurs en microscopie confocale [PE 860] [R 6 714].
HAUT DE PAGE7.2 Formules de la théorie de Kubelka-Munk
Les formules classiques de la théorie de...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Optique Photonique
(222 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Annexes
BIBLIOGRAPHIE
-
(1) - BERTHIER (S.) - Optique des milieux composites. - Polytechnica, Paris (1993).
-
(2) - BORN (M.), WOLF (E.) - Principles of optics-electromagnetic theory of propagation, interference and diffraction of light. - Pergamon Press, Oxford (1975).
-
(3) - BRIDGEMAN (T.) - The additivity of pigments characteristics. - DIE FARBE, 13(1-3) (1964).
-
(4) - BRIDGEMAN (T.) - Prediction of tristimulus values using the Kubelka-Munk analysis. - DIE FARBE, 13(1-3) (1964).
-
(5) - CALLET (P.) - Couleur-lumière, couleur-matière – Interaction lumière-matière et synthèse d’images. - Collection Sciences en actes, Diderot Éditeur, Arts et Sciences, Paris, New-York, 320 p, ISBN : 2-84-352-087-8, CDROM d’images inclus, mars 1998.
-
(6) - CALLET (P.), SÈVE (R.) - From...
Cet article fait partie de l’offre
Optique Photonique
(222 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Optique Photonique
(222 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive