Article de référence | Réf : N4629 v1

Fabrication des fibres optiques et intégration textile
Textiles intelligents : o-textiles

Auteur(s) : René M. ROSSI

Date de publication : 10 déc. 2023

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les o-textiles ou textiles optiques utilisent des fibres optiques comme capteurs ou systèmes d'illumination et de récupération de l'énergie solaire. Ces fibres sont habituellement formées de deux composants (cœur et gaine). Dans des applications de capteurs, la gaine interagit avec le milieu ambiant, menant à un changement de ses propriétés optiques et ainsi de l'intensité du signal optique transmis. Cet article présente les différents matériaux utilisés pour fabriquer des fibres optiques polymériques et leurs applications principales ainsi qu'un aperçu des polymères stimulables utilisés dans les textiles intelligents pour des applications de libération de substances ou de capteurs.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Smart textiles: o-textiles

O-textiles (optical textiles) use optical fibers as sensors, or lighting and solar energy harvesting systems. These fibers are generally made of two components (core and shell). For sensor applications, the shell interact with the environment which leads to a change of its optical properties and thus of the transmitted optical signal intensity. This article presents the different materials used to make polymer optical fibers and their main applications, as well as an overview on stimuli-responsive polymers used in smart textiles for drug delivery and sensing applications.

Auteur(s)

  • René M. ROSSI : Directeur de laboratoire - Laboratory for Biomimetic Membranes and Textiles, Empa, St-Gall, Suisse

INTRODUCTION

Les fibres optiques sont employées depuis longtemps en télécommunication comme systèmes de transmission de données, utilisant des sources de lumières cohérentes (lasers). Les premières fibres optiques ont été fabriquées en verre, mais depuis la fin des années 1960, des polymères ont également servi à leur réalisation. Ces fibres optiques polymériques (ou fibres optiques plastiques, POF pour polymer optical fibres) sont habituellement en PMMA (poly(méthacrylate de méthyle)) en matériau de cœur et en polymères fluorés en matériaux de gaine. Depuis les années 1990, différents polymères ont également été utilisés pour améliorer différentes propriétés de ces fibres optiques, notamment leur flexibilité, ce qui a permis de les intégrer dans des textiles intelligents. La grande flexibilité est un des avantages principaux des POF par rapport aux fibres optiques en verre. En revanche, la transmission de la lumière des POF est bien moins élevée que celle dans les fibres en verre, et c’est pourquoi elles sont utilisées pour des applications de transmission à courte distance . L’intégration textile de ces fibres n’est pas triviale puisque chaque ondulation de la fibre dans un tissu ou un tricot peut provoquer des pertes du signal optique.

Cet article traite tout d’abord des matériaux et des méthodes de fabrication des fibres optiques polymériques. Par ailleurs, les applications principales des POF et des textiles optiques y sont présentées, ainsi qu’une description des polymères stimulables utilisés dans les textiles intelligents pour des applications de libération de substances ou de capteurs.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

polymer optical fibers   |   fiber-based sensors   |   stimuli-responsive polymers

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-n4629


Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

1. Fabrication des fibres optiques et intégration textile

Une fibre optique est habituellement formée de deux composants principaux : un cœur entouré d’une gaine. Pour éviter une quelconque influence externe sur la transmission de lumière et l’intégrité de la fibre, une couche de protection est parfois ajoutée par-dessus la gaine. Par contre, si la fibre optique est utilisée comme capteur de paramètres environnementaux ou pour émettre de la lumière sur sa longueur, la fibre est constituée seulement des deux composants de base, ou même uniquement d’un cœur sans gaine.

1.1 Transmission de lumière dans des fibres optiques

La transmission de la lumière est basée sur la réflexion totale interne à l’interface cœur-gaine, dérivée de la loi de Snell-Descartes :

Avec :

nco
 : 
indice de réfraction du matériau de cœur (co)
ng
 : 
indice de réfraction de matériau de gaine (g)
θ1
 : 
angle incident
θ2
 : 
angle réfracté

Pour obtenir une réflexion totale interne, θ 2 = 90° et un angle critique est défini au-dessus duquel la lumière est totalement réfléchie. Dans une fibre optique, la gaine possède un indice de réfraction plus faible que le cœur et l’angle critique θc est défini par (figure 1) :

Avec :

nco
 : 
indice de réfraction du cœur
ng
 : 
indice de réfraction de la gaine
θc
 : 
angle critique au-dessus duquel la lumière est totalement réfléchie

Les...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Fabrication des fibres optiques et intégration textile
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - KŘEMENÁKOVÁ (D.), MILITKY (J.), MISHRA (R.) -   Fibers for optical textiles.  -  In Handbook of Fibrous Materials, Wiley, p. 593-648 (2020).

  • (2) - QUANDT (B.M.) -   Optical Fibre Textiles in Non-Invasive Medical Applications.  -  ETH Zurich (2016).

  • (3) - ZIEMANN (O.), KRAUSER (J.), ZAMZOW (P.E.), DAUM (W.) -   POF handbook.  -  Springer (2008).

  • (4) - BECKERS (M.), SCHLUETER (T.), VAD (T.), GRIES (T.), BUNGE (C.A.) -   An overview on fabrication methods for polymer optical fibers.  -  Polymer International 64 (1), p. 25-36 (2015).

  • (5) - WEI (K.), TONCELLI (C.), ROSSI (R.M.), BOESEL (L.) -   Hydrogel Fibers Produced via Microfluidics.  -  Multifunctional Hydrogels for Biomedical Applications, 233-274 (2022).

  • (6) - CRESPY (D.), ROSSI (R.M.) -   Temperature-responsive...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS