Présentation
RÉSUMÉ
Le développement récent d'encres fonctionnalisées constituées de nanoparticules métalliques, associé à la maîtrise du procédé d'impression par jet de matière, a rendu possible l'émergence de l'électronique imprimée. Les structures imprimées peuvent être traitées par des techniques de recuit sélectif qui permettent de réaliser la coalescence de nanoparticules de 20 nm à une température de procédé compatible avec les substrats plastiques flexibles. Cet article aborde les différents aspects liés à la réalisation de pistes métalliques sur substrat souple, depuis les technologies d'impression directes, jusqu'à l'adéquation entre les caractéristiques microstructurales et les propriétés électriques de telles structures pour la fabrication de dispositifs tels que des antennes, des pistes de routage ou des électrodes.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Romain CAUCHOIS : Docteur-ingénieur en microélectronique - Holst Centre / TNO, Pays-Bas
-
Mohamed SAADAOUI : Chargé de recherche en microélectronique - École nationale supérieure des Mines de Saint-Étienne, Institut Mines – Télécom, France
-
Karim INAL : Professeur en mécanique et sciences des matériaux - École nationale supérieure des Mines de Paris, Institut Mines – Télécom, France
INTRODUCTION
Le développement récent d’encres fonctionnalisées constituées de nanoparticules métalliques, associé à la maîtrise du procédé d’impression par jet d'encre, a rendu possible l’émergence de l’électronique imprimée. Les structures imprimées peuvent être traitées par des techniques de recuit sélectif qui permettent de réaliser la coalescence de nanoparticules de 20 nm à une température de procédé compatible avec les substrats plastiques flexibles. Cet article aborde les différents aspects liés à la réalisation de pistes métalliques sur substrat souple, depuis les technologies d’impression directes, jusqu’à l’adéquation entre les caractéristiques microstructurales et les propriétés électriques de telles structures pour la fabrication de dispositifs tels que des antennes, des pistes de routage ou des électrodes.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Sciences fondamentales > Nanosciences et nanotechnologies > Nanotechnologies pour l'électronique, l'optique et la photonique > Impression et recuit de nanoparticules métalliques pour l’électronique imprimée > Caractérisation des propriétés structurales et d’usage des structures conductrices
Accueil > Ressources documentaires > Innovation > Nanosciences et nanotechnologies > Nanotechnologies pour l'électronique, l'optique et la photonique > Impression et recuit de nanoparticules métalliques pour l’électronique imprimée > Caractérisation des propriétés structurales et d’usage des structures conductrices
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Caractérisation des propriétés structurales et d’usage des structures conductrices
L’évolution de la microstructure en fonction des paramètres de recuit et du type de rayonnement utilisé joue un rôle primordial dans l’optimisation des propriétés d’usage du film imprimé, à savoir la rigidité mécanique et la résistivité électrique. Pour améliorer les films imprimés, une meilleure compréhension des mécanismes en jeu et une analyse fine de la microstructure est nécessaire. Les données sur la taille et la forme des grains sont particulièrement cruciales mais restent toutefois difficiles à quantifier avec des instruments conventionnels, compte tenu de la résolution spatiale requise et de la rugosité importante des films minces d’argent déposés par jet d’encre. Dans cette section, plusieurs méthodes d’analyse seront exploitées pour caractériser l’évolution de la microstructure.
4.1 Caractérisation microstructurale des films minces recuits
4.1.1 Analyse d’image obtenue en microscopie électronique
Au cours du recuit, les différents mécanismes de diffusion de matière conduisent à une évolution de la microstructure du film déposé. En effet, comme développé dans la partie précédente, les nanoparticules métalliques subissent deux phénomènes concomitants que sont la coalescence et la croissance de grains. Dans les deux cas, ces phénomènes mettent en jeu des mécanismes de diffusion atomique induits par une minimisation de l’énergie de surface. Compte tenu de la taille nanométrique des objets à observer, la microscopie électronique à balayage (MEB) est particulièrement adaptée pour observer l’évolution de la taille de grains ou de la taille de pores à partir d’une analyse d’images. Quel que soit le type de détecteur utilisé pour l'observation, les images sont en niveaux de gris, dont la nuance est directement corrélée à l'intensité du signal reçu par le détecteur. Selon sa nature, un détecteur donné sera alors sensible aux électrons secondaires, aux électrons Auger, aux électrons rétrodiffusés ou aux photons X. Le contraste de l'image fournira alors des renseignements sur la topographie, sur la microstructure ou bien sur la nature...
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Caractérisation des propriétés structurales et d’usage des structures conductrices
BIBLIOGRAPHIE
-
(1) - PIQUÉ (A.), CHRISEY (D.B.), AUYEUNG (R.C.Y.), FITZ-GÉRALD (J.), WU (H.D.), McGILL (R.A.), LAKEOU (S.), WU (P.K.), NGUYEN (V.), DUIGNAN (M.) - « A novel laser transfer process for direct writing of electronic and sensor materials » - Applied Physics A : Materials Science & Processing, vol. 69, pp. S279-S284 (1999).
-
(2) - GUTFELD (R.J.) von, TYNAN (E.E.), MELCHER (R.L.), BLUM (S.E.) - « Laser enhanced electroplating and maskless pattern generation » - Applied Physics Letters, vol. 35, n° 9, pp. 651-653 (1979).
-
(3) - HON (K.K.B.), LI (L.), HUTCHINGS (I.M.) - « Direct writing technology – Advances and developments » - CIRP Annals – Manufacturing Technology, vol. 57, n° 2, pp. 601-620 (2008).
-
(4) - ADRIAN (F.J.) - « A study of the mechanism of metal deposition by the laser-induced forward transfer process » - Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures, vol. 5, n° 5, p. 1490 (Sep. 1987).
-
(5) - BOHANDY (J.), KIM (B.F.), ADRIAN...
DANS NOS BASES DOCUMENTAIRES
NORMES
-
ISO Radio frequency identification for item management – Unique identification for RF tags. - ISO/IEC 15963 - 2009
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive