Présentation

Article

1 - L’IMAGERIE POUR LA MÉDECINE

2 - IMAGERIE OPTIQUE DANS LES MILIEUX DIFFUSANTS

3 - TECHNIQUES D’IMAGERIE ACOUSTO-OPTIQUE

4 - MODES D’EXCITATION ULTRASONORE

5 - CONCLUSIONS ET PERSPECTIVES

6 - GLOSSAIRE

Article de référence | Réf : R6724 v1

Conclusions et perspectives
Techniques d’imagerie acousto-optique en milieux diffusants

Auteur(s) : François RAMAZ, Maïmouna BOCOUM, Anne LOUCHET-CHAUVET, Jean-Michel TUALLE

Date de publication : 10 janv. 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La détection de petits objets à l’intérieur de milieux diffusants est limitée par le régime de diffusion multiple de la lumière. C’est le cas des milieux biologiques si l’on souhaite une analyse au-delà du millimètre de profondeur.

L’imagerie acousto-optique exploite le couplage entre la lumière et les ultrasons, balistiques et peu atténués dans les milieux biologiques (fréquence ultrasonore < 20 MHz). Il est alors possible d’obtenir une information optique locale guidée par les ultrasons. Cette approche bimodale fournit deux informations complémentaires, à savoir une image échographique et une image optique du milieu.

Cet article introduit les principes de l’imagerie acousto-optique, illustrés par différentes configurations expérimentales qui permettent d’effectuer ce type d’imagerie.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • François RAMAZ : Maître de conférences - Institut Langevin Ondes & Images, ESPCI Paris

  • Maïmouna BOCOUM : Chargée de recherches CNRS - Institut Langevin Ondes & Images, ESPCI Paris

  • Anne LOUCHET-CHAUVET : Chargée de recherches CNRS - Institut Langevin Ondes & Images, ESPCI Paris

  • Jean-Michel TUALLE : Chargé de recherches CNRS - Laboratoire de physique des lasers, CNRS, Villetaneuse, France

INTRODUCTION

L’imagerie acousto-optique est une méthode hybride qui permet de visualiser grâce à la lumière des objets enfouis dans des milieux diffusants épais (> cm), avec des applications, comme en imagerie médicale pour la détection de tumeurs.

Une information optique est pertinente, car elle complète des données obtenues par d’autres techniques d’imagerie médicale en apportant un contraste supplémentaire pour l’aide au diagnostic, comme un métabolisme ou une identification d’espèce.

Un paramètre, jugé important dans de nombreux cas, est le taux de saturation d’oxygène dans le sang, que l’on peut obtenir en effectuant une mesure à plusieurs longueurs d’ondes, compte tenu du fait que l’hémoglobine (Hb) et l’hémoglobine oxygénée (HbO) possèdent des spectres d’absorption différents dans le proche infrarouge. Seulement, le phénomène de diffusion multiple dans ces milieux empêche une imagerie directe bien résolue (c’est-à-dire submillimétrique) dès lors qu’une exploration centimétrique est souhaitée. On peut cependant retrouver une information locale en associant lumière et ultrasons et profiter du caractère balistique de ces derniers pour guider la mesure optique à l’intérieur du milieu en balayant leur position, comme le fait un échographe standard.

Cependant, cette méthode dite « imagerie acousto-optique » ou encore UOT pour « Ultrasound Optical Tomography » est délicate à mettre en œuvre, dans la mesure où les signaux optiques collectés sont faibles. De plus, la lumière sortant de ce type de milieu possède un front d’onde spatial aléatoire (dit « speckle »), ce qui nécessite un traitement adapté.

Nous présenterons, dans un premier temps, le contexte de ce type d’imagerie avec un bref rappel des techniques d’imagerie médicale existantes. Afin d’avoir un panorama le plus large possible, nous décrirons, dans les grandes lignes, les techniques de tomographie optique diffuse et d’imagerie photo-acoustique, qui sont des méthodes concurrentes de l’imagerie acousto-optique.

Nous donnerons ensuite les bases théoriques de l’effet acousto-optique afin de comprendre comment l’on peut accéder à une information optique locale dans le milieu, par sélection des photons, dits « marqués », grâce à des ultrasons. Ces notions nous permettront de comprendre les configurations expérimentales qui sont en cours de développement, à savoir l’interférométrie adaptative avec des cristaux photoréfractifs, l’holographie numérique, ou encore le filtrage spectral des photons marqués par les ultrasons reposant sur le phénomène de creusement spectral.

Un dernier chapitre s’intéressera aux différentes formes d’excitations ultrasonores appliquées dans le milieu, et qui permettent d’améliorer significativement le rapport signal-à-bruit de la mesure.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-r6724


Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

5. Conclusions et perspectives

L’imagerie acousto-optique de milieux biologiques à plusieurs centimètres de profondeur est aujourd’hui encore en cours de développement, et il reste beaucoup à faire avant d’obtenir des systèmes aussi avancés que les dispositifs échographiques et IRM. Cela provient de la faible quantité de lumière à analyser, et également de quelques obstacles technologiques non encore pleinement maîtrisés, mais qui vont se résoudre progressivement, avec le développement de sources lasers quasi continues puissantes et très bien définies spectralement, des caméras CMOS plus rapides avec toujours plus de pixels, et bien sûr des traitements de données toujours plus efficaces par GPU.

Comme nous l’avons vu, il existe deux approches possibles pour réaliser la détection et extraire l’information, l’une cohérente (basée sur interférométrie) et l’autre incohérente (basée sur un filtre spectral). Il apparaît utile à l’heure actuelle de poursuivre le développement de ces deux architectures en parallèle. En effet, la solution cohérente a l’avantage de faire appel à des photodétecteurs large bande (caméra, photodiode), potentiellement favorables à des mesures résolues en longueur d’onde. Cependant, les instabilités liées à la propagation de la lumière dans des organismes in vivo peuvent fortement dégrader le signal d’interférences.

À l’inverse, la deuxième approche, qui consiste à mesurer directement un flux, n’est pas affectée pour l’application à l’imagerie in vivo. C’est d’ailleurs avec cette méthode que les premières images acousto-optiques ont été obtenues sur petit animal. Toutefois, les matériaux dopés en terres rares disponibles pour réaliser un filtre spectral dans la fenêtre de transparence biologique sont en nombre restreint, ce qui limite l’exploration spectrale. Ils nécessitent d’être refroidis à 4 °K, mais ceci ne constitue plus à l’heure actuelle un obstacle pratique majeur avec l’apparition de petits cryostats optiques à circulation d’hélium et extrêmement simples d’utilisation « Plug&Play ».

L’exploration des différents modes d’excitation ultrasonore bénéficie à l’ensemble de ces méthodes, cohérentes et incohérentes. Ces modes, qui peuvent prendre des formes très diverses (ondes focalisées, planes ou structurées,...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusions et perspectives
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - DEFFIEUX (T.) -   Palpation par force de radiation ultrasonore et échographie ultrarapide : « Applications à la caractérisation tissulaire in vivo »,  -  Thèse de doctorat université Paris VII (2008). https://theses.hal.science/pastel-00005573/

  • (2) - HARMS (F.) -   Imagerie des tissus à haute résolution en profondeur par tomographie de cohérence optique plein champ: approches instrumentales et multimodales pour l’application au diagnostic per-opératoire du cancer.  -  Thèse de doctorat université Pierre et Marie Curie – Paris VI (2015).

  • (3) - WANG (X.), PANG (Y.), KU (G.), XIE (X.), STOICA (G.), WANG (L.V.) -   Non invasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,  -  Nat. Biotech., 21 – 7, juillet 2003.

  • (4) - BELL (A.G.) -   On the production and reproduction of sound by light,  -  Am. J. Sci. 20, 35 (1880).

  • (5) - DEBYE (P.), SEARS (F.W.) -   On the scattering of light by supersonic waves,  -  Proc....

DANS NOS BASES DOCUMENTAIRES

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS