Présentation
EnglishAuteur(s)
-
Paul SMIGIELSKI : Docteur ès sciences - Ingénieur de l’École supérieure d’optique (ESO) - Attaché à la Direction Scientifique de l’Institut franco-allemand de Recherches de Saint-Louis - Cofondateur d’HOLO3 - Professeur conventionné à l’École nationale supérieure de physique de Strasbourg (ENSPS) - Université Louis-Pasteur de Strasbourg
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Plusieurs laboratoires furent à l’origine en 1965 de l’interférométrie holographique et du véritable départ de l’holographie dans l’industrie. Les chercheurs constatèrent qu’un déplacement trop important de l’objet (ou de tout autre élément du montage), pendant l’enregistrement de l’hologramme, entraînaît l’apparition de franges d’interférence sombres et claires parasites sur l’image restituée, pouvant altérer complètement celle-ci. Pour obtenir un hologramme de bonne qualité, il fallait donc éliminer ces franges parasites, en assurant une stabilité suffisante de l’objet et des différents éléments du montage pendant le temps d’exposition. Mais, d’un autre côté, ces franges d’interférences parasites pouvaient être exploitées et donner de précieux renseignements quantitatifs sur les déplacements qui leur avaient donné naissance. Un défaut majeur pour un hologramme image devenait très intéressant pour les applications industrielles.
Tout ce qui se déforme dans la nature est « a priori » susceptible d’être analysé par interférométrie holographique : de la déformation d’un tympan sous l’effet d’un bang d’avion supersonique à la déformation des éléments d’un moteur en fonctionnement, en passant par la croissance d’un cristal ou par les variations de densité de l’air autour d’un profil d’aile d’avion.
Dans cet article, nous allons traiter aussi bien les aspects physiques que théoriques de l’interféromètrie holographique, en donnant ensuite un aperçu sur les applications.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Sciences fondamentales > Physique Chimie > Optique physique > Interférométrie holographique - Principes > Rappels
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Rappels
Les interféromètres classiques (type Michelson ou Mach-Zehnder) sont utilisés pour mesurer de petites différences de chemin optique concernant des surfaces planes (ou de révolution) polies ou observées en réflexion spéculaire. L’holographie a permis d’étendre les mesures interférométriques à des objets tridimensionnels diffusants.
Le principe général consiste à superposer des ondes lumineuses, pas forcément contemporaines, dont l’une au moins est produite par un hologramme. Ainsi, grâce à l’holographie, on est capable de faire interférer les ondes lumineuses provenant, à différents instants, d’un même objet se déplaçant ou se déformant au cours du temps. L’état de surface de l’objet peut être quasi quelconque, mais ne doit pas se modifier (ou très peu) pendant l’opération. Les interférences observées sont caractéristiques des déplacements micrométriques subis par l’objet. La mesure des interférences permet de quantifier les déplacements (sensibilité : fraction de micromètre).
Les premières expériences d’interférométrie holographique datent comme nous l’avons vu dans l’introduction de 1965 ...
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Rappels
BIBLIOGRAPHIE
-
(1) - HORMANN (M.H.) - An application of wavefront reconstruction to interferometry. - Appl. Opt., 4, p. 333-336 (1965).
-
(2) - BROOKS (R.E.), HEFLINGER (L.O.), WUERKER (R.F.) - Interferometry with a holographically reconstructed comparison beam. - Appl. Phys. Lett., 7, p. 248-249 (1965).
-
(3) - POWELL (R.L.), STETSON (K.A.) - Interferometric analysis by wavefront reconstruction. - J. Opt. Soc. Am., 55, p. 1593-1598 (1965).
-
(4) - SURGET (J.) - Two reference beam holographic interferometry for aerodynamic flow studies. - Nouvelle Revue d’Optique, vol. 5, n 4 (1974).
-
(5) - DÄNDLIKER (R.), THALMANN (R.) - Heterodyne and quasi-heterodyne holographic interferometry. - Opt. Eng., 24, p. 824-831 (1985).
-
(6) - OSTROVSKY (Y.I.), SHCHEPINOV (V.P.), YAKOVLEV (V.V.) - Holographic interferometry in experimental mechanics. - Springer...
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive