Présentation

Article

1 - ASPECTS PHYSIQUES

2 - ASPECTS THÉORIQUES

3 - DIFFÉRENTS TYPES D’HOLOGRAMMES

4 - QUELQUES PROPRIÉTÉS DES HOLOGRAMMES

5 - CONDITIONS D’ENREGISTREMENT ET DE RESTITUTION

6 - APERÇU SUR LES APPLICATIONS

  • 6.1 - Analyse des microparticules
  • 6.2 - Hologramme utilisé comme composant optique
  • 6.3 - Applications artistiques et publicitaires. Muséologie

7 - CONCLUSION

Article de référence | Réf : AF3340 v1

Quelques propriétés des hologrammes
Holographie optique - Principes

Auteur(s) : Paul SMIGIELSKI

Date de publication : 10 oct. 1998

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • Paul SMIGIELSKI : Docteur ès sciences - Ingénieur de l’École supérieure d’optique (ESO) - Attaché à la Direction scientifique de l’Institut franco-allemand de recherches de Saint-Louis - Cofondateur d’HOLO 3 - Professeur conventionné à l’École nationale supérieure de physique de Strasbourg (ENSPS) - Université Louis-Pasteur de Strasbourg

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

C‘est l’Anglais Dennis Gabor qui, en 1947, eut l’idée de l’holographie. À cette époque, il s’occupait de microscopie électronique et son rêve était d’observer la structure atomique dans ses trois dimensions. Mais l’imperfection des « lentilles » électroniques de ce temps-là avait pour conséquence de donner des images floues, rendant impossible l’observation de la structure. Cependant, les ondes électroniques qui avaient « rencontré » l’objet devaient, selon le principe de Huyghens, contenir toute l’information nécessaire à la visualisation de cet objet. Si on n’arrivait pas au but visé, c’est parce qu’on n’avait enregistré que la moitié seulement de l’information, c’est-à-dire l’amplitude des ondes. La phase de ces ondes était perdue par la nature même du procédé d’enregistrement photographique. C’est cette réflexion de Gabor qui fut le point de départ de son idée de l’hologramme. Pour enregistrer la phase des ondes ayant rencontré l’objet, il « suffirait » d’enregistrer les interférences entre ces ondes et une onde de référence simple provenant de la même source d’éclairage de l’objet. La photographie de ces interférences illuminée à l’aide de l’onde de référence seule permettrait, ensuite, de restituer les ondes objet. L’holographie était née.

Mais ce n’est qu’en 1962, soit deux ans après que l’Américain Maiman eut fait fonctionner le premier laser (un laser à rubis, en l’occurrence), que l’holographie prit son véritable essor avec l’enregistrement des premiers hologrammes d’objets tridimensionnels diffusant la lumière par les Américains Leith et Upatnieks et par le russe Dénisuyk, grâce à l’utilisation des premiers lasers à gaz (hélium-néon) à émission continue. Ces hologrammes, surtout ceux du Russe, ont donné lieu à ce qu’il convient d’appeler l’holographie image, connue du grand public par son côté spectaculaire (relief intégral saisissant des hologrammes géants). Mais ce côté spectaculaire a, dans une certaine mesure, contribué à donner une image de l’holographie éloignée des applications industrielles. Une application, relativement bien développée de l’holographie image aujourd’hui, est l’hologramme d’un type particulier utilisé sur les cartes bancaires, dont le but était de rendre la carte infalsifiable.L’utilisation de l’hologramme comme composant optique (miroir, lentille, réseau ...) est sans doute aussi un des exemples prometteurs de l’holographie.

Dans cet article, nous allons traiter aussi bien les aspects physiques que théoriques de l’holographie optique en donnant ensuite un aperçu sur les applications.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af3340


Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

4. Quelques propriétés des hologrammes

L’interception par l’œil ou par un autre récepteur photosensible d’une petite portion de l’onde diffusée par un objet permet de voir cet objet. On a vu qu’un hologramme restituait une onde lumineuse semblable à celle que diffusait l’objet lors de l’enregistrement. En interceptant une portion de cette onde avec l’œil, on se trouve exactement dans la même situation que dans la réalité : tout se passe, à la restitution, comme si l’objet était présent. Toutes les propriétés habituelles de la vision d’une scène sont respectées.

4.1 Parallaxe

L’objet diffuse la lumière qu’il reçoit dans tout l’espace et, en particulier, sur le support photosensible. Une petite portion A de l’hologramme enregistre donc l’information sur l’ensemble de l’objet vu de A. De même, une autre portion B verra l’ensemble de l’objet mais sous un autre angle. À la restitution, on retrouve la même situation.

En déplaçant l’œil derrière l’hologramme, on voit une image de l’objet, exactement semblable à l’objet, mais sous un angle de vue variable avec la position de l’œil (comme dans la réalité). Ainsi, un objet caché derrière un autre vu de A (objets 1 et 3, figure 17) sera visible vu de B. C’est l’effet de parallaxe.

Il est bien illustré par les photographies de la figure 18 qui ont été prises suivant deux directions différentes à travers l’hologramme d’un jeu d’échecs.

Ce qui vient d’être dit explique la spectaculaire expérience de l’hologramme cassé en morceaux. Effectivement, si vous cassez l’hologramme du jeu d’échec par exemple, chaque morceau, même très petit (quelques millimètres carrés) permettra de restituer une image complète du jeu d’échec sous un angle de vue déterminé par la position d’origine de chaque morceau sur l’hologramme.

Il est à noter que cette expérience ne peut être réalisée avec tous les hologrammes. Dans le cas d’un hologramme réalisé en lumière non diffuse, en cassant l’hologramme, on « cassera l’image ». Un morceau ne restituera pas l’ensemble du champ. De nombreux...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Quelques propriétés des hologrammes
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - COLLIER (R.J.), BURCKHARDT (C.B.), LIN (L.H.) -   Optical holography.  -  Academic Press, New York (1971).

  • (2) - FRANÇON (M.) -   Holographie.  -  Masson Éd., Paris (1969).

  • (3) - GABOR (D.) -   A new microscopic principle.  -  Nature 161, p. 777-778 (1948).

  • (4) - LEITH (E.), UPATNIEKS (J.) -   New technique in wavefront reconstruction.  -  J. Opt. Soc. Am. 51, p. 1469 (1961).

  • (5) - DENISYUK (Yu.N.) -   On the reproduction of the properties of an object in the wavefield of the radiation scattered by it.  -  Dokl. AN SSSR 144, p. 1275-1276 (1962).

  • (6) - KAKICHASHVILL (Sh.D.) -   On the polarization recording of holograms.  -  Opt. Spektrosk. 33, p. 324-327 (1972)

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS