Article de référence | Réf : IN191 v1

Applications ou mise en œuvre
Un dérivé de la curcumine pour l’optoélectronique organique

Auteur(s) : Anthony D’ALEO, Elena ZABOROVA, Frédéric FAGES

Date de publication : 10 oct. 2018

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Cet article traite des propriétés photophysiques du complexe de bore d'un dérivé de la curcumine en solution et à l'état solide. Ce composé émet une fluorescence retardée dans le proche infrarouge et permet la fabrication de diodes électroluminescentes organiques efficaces au-delà de 700 nm. Ce colorant présente également la propriété d'émettre une fluorescence stimulée lorsqu'il est excité par un laser impulsionnel. Il s'agit du premier exemple de molécule organique combinant ces deux propriétés d'émission retardée et stimulée. Ce travail ouvre la voie à la réalisation du laser organique proche infrarouge fonctionnant sous pompage électrique.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Anthony D’ALEO : Chargé de recherche, CNRS - Building Blocks for Future Electronics Laboratory (2-B FUEL), UMI 2002 CNRS-Ewha-Yonsei, Séoul, Corée

  • Elena ZABOROVA : Maître de Conférences, Aix Marseille Université - Aix Marseille Univ, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France

  • Frédéric FAGES : Professeur, Aix Marseille Université - Aix Marseille Univ, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France

INTRODUCTION

Un matériau organique est électroluminescent lorsqu’il émet de la lumière en étant soumis à une excitation électrique. Ce phénomène physique est à la base de la conception des diodes électroluminescentes organiques OLED, dispositifs qui envahissent actuellement le marché des écrans de télévision et de smartphones. Cet article décrit les propriétés photophysiques d’un colorant organique dont la structure est dérivée de celle de la curcumine. Dans une matrice solide, ce composé émet une fluorescence et une électroluminescence dans le proche infrarouge. L’analyse des spectres et déclins de fluorescence montre la contribution significative d’une émission de fluorescence retardée qui explique le rendement quantique externe élevé (environ 10 % à 720 nm) d’une diode électroluminescente. Ce colorant rentre dans la catégorie des matériaux électroluminescents dits de 3e génération. Contrairement à tous les exemples de matériaux de ce type, la molécule considérée montre de plus une aptitude à amplifier la lumière qui provient d’un processus favorable d’émission de fluorescence stimulée. Il s’agit du premier exemple de colorant organique qui présente la combinaison de ces deux propriétés. Ces résultats ouvrent la voie à la réalisation du laser organique continu et du laser organique pompé électriquement. Ce dernier cas représente un des enjeux majeurs dans le domaine des lasers organiques. Cet article présente une description des propriétés photophysiques du colorant considéré en s’appuyant sur les concepts généraux décrivant les états excités de molécules organiques et rendant compte du mécanisme de la fluorescence retardée.

Points clés

Domaine : matériaux organiques

Degré de diffusion de la technologie : émergence

Technologies impliquées : synthèse organique, photophysique moléculaire, émission stimulée, électroluminescence

Domaines d’application : électronique organique, photonique organique

Principaux acteurs français

  • Pôles de compétitivité : Minalogic, SCS

  • Centres de compétence : AFELIM, Réseau Nanorgasol, GDR CNRS OERA

  • Industriels : ARMOR, PCAS (novacap group), Dracula Technologies, Arkema, ISORG

Autres acteurs dans le monde : Prof. Chihaya Adachi, Université de Kyushu, Fukuoka (Japon); Prof. Sir Richard Friend, Cavendish Laboratory, Université de Cambridge (Royaume Uni); Samsung, LG, Merck, Cambridge Display Technology

Contact : Frédéric Fages, [email protected]

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-in191


Cet article fait partie de l’offre

Optique Photonique

(222 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

3. Applications ou mise en œuvre

3.1 Propriétés photophysiques de la molécule 2 en solution

En solution dans les solvants organiques, la molécule 2 présente un spectre d’absorption dont la bande de plus basse énergie est localisée dans le domaine visible (figure 4 a). Elle correspond à la transition électronique entre les états HO et BV. L’intensité de cette bande est caractérisée par un coefficient d’absorption molaire dont la valeur est de l’ordre de 100 000 M–1.L.cm–1, ce qui représente une valeur très élevée et témoigne du caractère permis de la transition. Le retour de l’état excité vers l’état fondamental s’accompagne d’une émission de fluorescence. La position du spectre d’émission, comme celui d’absorption, est très sensible à la nature du solvant. On observe un déplacement de la position de la bande spectrale d’absorption ou d’émission d’une molécule vers les grandes longueurs d’onde lorsque la polarité du milieu augmente et l’effet est très marqué sur les spectres d’émission dont les maxima s’étendent de 600 nm dans le cyclohexane à 795 nm dans l’acétonitrile très polaire (figure 4). En jouant sur la polarité du milieu, il est donc possible d’ajuster l’énergie des photons émis du domaine visible au PIR. L’origine de cet effet de solvatochromisme est à mettre sur le compte de la structure D-π-A-π-D qui favorise la formation d’états électroniques excités possédant un fort caractère de transfert de charge intramoléculaire. Ces états sont d’autant plus stabilisés que les molécules de solvants possèdent un moment dipolaire élevé, ce qui explique le décalage vers le rouge important du spectre de fluorescence. Le rendement quantique de fluorescence, correspondant au nombre de photons émis ramené au nombre de photons absorbés, est de l’ordre de 40 – 50 % dans les solvants peu polaires comme l’éther éthylique et chute dans les solvants polaires (de l’ordre de 0,1 % dans l’acétonitrile). Dans le dernier cas, le transfert de charge intramoléculaire est exalté et des voies supplémentaires de désactivation des états excités sont possibles et plus efficaces que la fluorescence. Les durées de vie de l’état...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(222 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Applications ou mise en œuvre
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SHIRAKAWA (H.), LOUIS (E.J.), MACDIARMID (A.G.), CHIANG (C.K.), HEEGER (A.J.) -   Synthesis of electrically conducting organic polymers : halogen derivatives of polyacetylene, (CH)x.  -  J. Chem. Soc., Chem. Commun., p. 578-580 (1977).

  • (2) - KELLEY (T.W.), BAUDE (P.F.), GERLACH (C.), ENDER (D.E.), MUYRES (D.), HAASE (M.A.), VOGEL (D.E.), THEISS (S.D.) -   Recent Progress in Organic Electronics : Materials, Devices, and Processes.  -  Chem. Mater., 16, p. 4413-4422 (2004).

  • (3) - WANG (C.), DONG (H.), HU (W.), LIU (Y.), ZHU (D.) -   Semiconducting π-Conjugated Systems in Field-Effect Transistors : A Material Odyssey of Organic Electronics.  -  Chem. Rev., 112, p. 2208-2267 (2012).

  • (4) - ARIAS (A.C.), MACKENZIE (J.D.), MCCULLOCH (I.), RIVNAY (J.), SALLEO (A.) -   Materials and Applications for Large Area Electronics : Solution-Based Approaches.  -  Chem. Rev., 110, p. 3-24 (2010).

  • (5) - BEAUJUGE (P.M.), FRECHET (J.M.J) -   Molecular Design and Ordering Effects in π-Functional Materials for Transistor and Solar Cell Applications.  -  J. Am. Chem....

1 Sites Internet

Projet SmartEEs (Digital Innovation Hub dedicated to flexible electronics technologies) : https://smartees. eu/

HAUT DE PAGE

2 Brevets

F. Fages, A. D’Aléo, E. Zaborova, D. H. Kim, C. Adachi, J.-C. Ribierre « Organic Electroluminescent Device, Compound and Use Thereof » Japan patent application 2017-30528, Fukuoka (Japan) 22.03.2017.

HAUT DE PAGE

3 Annuaire

Organismes – Fédérations – Associations (liste non exhaustive)

Lumière Molécules Matière (LUMOMAT)

https://www.lumomat.fr/

Association française de l’électronique imprimée (AFELIM)

http://www.afelim.fr/

GDR CNRS Organic electronics for the new era (OERA)

http://gdr-oera.cnrs.fr

Documentation – Formation – Séminaires (liste non exhaustive)

L’électronique organique, une révolution. Le Monde 15 mai 2015.

https://www.lemonde.fr

Carte interactive : l’électronique organique Made in France. Industries & Technologies,...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(222 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS