Présentation

Article interactif

1 - DÉTECTEURS THZ AU COURS DU TEMPS : DEPUIS LES THERMOPILES JUSQU’AUX COMPOSANTS DU XXIE SIÈCLE

2 - MESURER L’AMPLITUDE ET LA PHASE, OU LA PUISSANCE DU CHAMP ÉLECTROMAGNÉTIQUE THZ ?

3 - DÉFINITION DE LA SENSIBILITÉ, DU BRUIT DE DÉTECTION ET DE LA DYNAMIQUE

4 - DÉTECTEURS DE PUISSANCE (OU D’ÉNERGIE)

5 - DÉTECTEURS SENSIBLES À L’AMPLITUDE DE L’ONDE THZ

6 - SYNTHÈSE SUR LES DÉTECTEURS DE RAYONNEMENT THZ

7 - GLOSSAIRE

Article de référence | Réf : E4063 v1

Détecteurs sensibles à l’amplitude de l’onde THz
Détecteurs d’ondes électromagnétiques térahertz

Auteur(s) : Jean-Louis COUTAZ

Date de publication : 10 août 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Cet article donne une revue des détecteurs de rayonnements électromagnétiques aux fréquences térahertz. Il faut suite et complète un article dédié aux sources de rayonnement THz, article dans lequel sont introduites la science et la technologie du domaine térahertz, ainsi que leurs principales applications, utiles pour la compréhension du présent article. Celui-ci commence par une brève description historique de l'apparition des principaux détecteurs térahertz depuis la fin du XIXe siècle. Les familles des détecteurs les plus couramment employés (bolomètres, optoélectroniques...) sont ensuite présentées, avec le principe de fonctionnement et les caractéristiques de chacun de ces détecteurs. L'article se termine par une synthèse sur les détecteurs, une comparaison de leurs performances et de leurs domaines d'applications.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Jean-Louis COUTAZ : Professeur émérite IMEP-LAHC, Université Savoie Mont-Blanc, Le Bourget-du-Lac, France

INTRODUCTION

Dans le spectre électromagnétique, le domaine térahertz (THz), encore appelé infrarouge très lointain (FIR, far infrared en anglais), se situe entre l’infrarouge et les micro-ondes. Typiquement, il s’étend depuis des longueurs d’onde d’environ 30 μm jusqu’à 3 mm, c’est-à-dire depuis environ 100 GHz jusqu’à 10 THz en termes de fréquence, soit encore des photons dont l’énergie est comprise entre 0,4 et 40 meV. Cette position spectrale est à l’origine des nombreuses difficultés pour mettre au point des sources et des détecteurs performants, et donc pour réaliser des études aux fréquences THz et pour développer des applications pourtant prometteuses. Dans le cas des détecteurs, on recherche des dispositifs compacts, faciles d’utilisation et de coût modéré, de grandes sensibilité et dynamique, ainsi que la possibilité de fabriquer des matrices de détecteurs pour l’imagerie.

Pour comprendre les difficultés à concevoir et à produire de tels détecteurs performants, il faut revenir aux bases physiques de la détection de rayonnement électromagnétique. Ce rayonnement absorbé par le matériau éclairé au sein du détecteur engendre soit une élévation de température de ce matériau, soit des transitions entre niveaux énergétiques des atomes/molécules du matériau, ou encore le transfert pour chaque photon de son énergie aux charges libres de ce matériau. Dans le cas de l’échauffement du détecteur, les faisceaux THz, dans la plupart des études applicatives, sont très peu puissants et l’élévation de température reste minime. Dans le cas du transfert de l’énergie des photons THz aux charges libres ou liées du matériau éclairé, cette énergie est inférieure ou de l’ordre de l’énergie du quantum thermique (24 meV) à température ambiante. Cela empêche les détecteurs de type « optique », généralement à semi-conducteurs, de fonctionner efficacement dans le domaine THz, puisqu’ils requièrent une bande de conduction (ou niveau excité) vide et une bande de valence (ou niveau fondamental) peuplée. Pour cette raison, les détecteurs employés dans le visible et l’infrarouge perdent leur efficacité lorsqu’on atteint les fréquences THz. Du coté micro-ondes, les récepteurs sont basés sur le principe de l’accélération des électrons libres du métal, qui constitue l’antenne de réception, sous l’effet de la force de Coulomb induite par le champ électromagnétique couplé à l’antenne. Le courant électrique résultant sera lu par une électronique. Ces systèmes de réception perdent leur efficacité aux fréquences THz à cause du rendement plus faible des composants électroniques et des résistances, ainsi que des capacités parasites qui limitent leur bande passante.

Cet article présente tout d’abord un panorama historique de l’invention et du développement des détecteurs THz, qui petit à petit ont progressé pour tenter d’échapper aux contraintes que nous venons d’énumérer. Les bolomètres ont fait des progrès spectaculaires, grâce par exemple à l’introduction des supra-conducteurs, atteignant pratiquement, depuis les années 2000, les limites quantiques de détection. Un autre progrès majeur a été apporté, à la fin des années 1980, par la mise au point de techniques optoélectroniques basées sur l’emploi de lasers impulsionnels femtosecondes. Enfin, les composants électroniques sont de plus en plus développés et leur fréquence de coupure atteint presque le THz.

Cet article donne ensuite une revue, établie en 2021, des principaux détecteurs de rayonnement THz. Leur principe de fonctionnement et leurs performances seront décrits et listés. L’article se termine par une synthèse des détecteurs et de leurs domaines d’application.

Le lecteur trouvera en fin d’article un glossaire des termes utilisés.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e4063


Cet article fait partie de l’offre

Optique Photonique

(223 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

5. Détecteurs sensibles à l’amplitude de l’onde THz

5.1 Techniques de mesure

Dans les domaines des ondes radio jusqu’aux micro-ondes, le champ électrique d’une onde incidente est détecté grâce au courant alternatif qu’il induit dans un conducteur métallique ayant forme d’antenne. Cependant, le champ de l’onde THz oscille avec une périodicité de l’ordre ou inférieure à la picoseconde, et aujourd’hui aucune électronique ne permet d’enregistrer des signaux aussi brefs. Si un détecteur délivre un signal proportionnel à ce champ THz, ce signal ne pourra être enregistré avec la précision temporelle requise que grâce à des techniques en temps équivalent. Notons cependant qu’il existe de rares publications présentant des techniques monocoup, basées sur une dérive en fréquence (chirp) d’impulsions laser de lecture, ou sur des effets de retard temporel géométriques, mais elles restent peu usitées jusqu’à présent.

La technique de mesure temporelle en temps équivalent nécessite de disposer de signaux aussi répétitifs que possible, et de déclencher le processus de détection de manière synchrone avec le signal périodique à mesurer (figure 10). Dans le cas des ondes THz, les lasers à blocage de phase femtoseconde sont des outils idéaux pour mettre en œuvre cette technique. En effet, ils serviront à la fois à la génération du signal THz répétitif et à sa lecture synchrone. L’impulsion THz générée baigne le détecteur où l’effet que son champ électrique produit est lu à l’aide d’une partie du faisceau laser décalé temporellement par une ligne à retard par rapport à l’autre partie ayant déclenché l’émission. Cette lecture se réalise par effet non linéaire, qui mélange le champ THz à mesurer E THz (t) et la puissance du laser P laser (t). Le signal instantané S (t, τ) délivré par le détecteur est égal à :

S( t,τ)=η( tτ)(t) E ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Optique Photonique

(223 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Détecteurs sensibles à l’amplitude de l’onde THz
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SIMOENS (F.) -   THz bolometer detectors.  -  In : Physics and Applications of Terahertz Radiation, Springer, p. 35-75 (2014).

  • (2) - ROGALSKI (A.) -   Infrared detectors.  -  CRC Press (2011).

  • (3) - SIZOV (F.), ROGALSKI (A.) -   THz detectors.  -  In : Progress in Quantum Electronics, 34, p. 278-347 (2010).

  • (4) - SIZOV (F.) -   Terahertz radiation detectors : the state-of-the-art.  -  In : Semicond. Sci. Technol., 33, p. 123001 (2018).

1 Annuaire

HAUT DE PAGE

1.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)

Alpes Lasers SA, Avenue des Pâquiers 1, 2072 St-Blaise, Suisse : lasers QCL http://www.alpeslasers.ch

ACST GmbH, Josef-Bautz-Strasse 15, DE-63457 Hanau, Allemagne : diodes, multiplicateurs, antennes, guides d’ondes, etc. https://acst.de/products/sbd/

Batop GmbH, Stockholmer Str. 14, 07747 Jena, Allemagne : semi-conducteurs, antennes photocommutatrices, spectromètres https://www.batop.de/

EKSMA, Dvarcioniu st. 2B, LT-10233 Vilnius, Lituanie : cristaux non linéaires, composants https://eksmaoptics.com/

Gentec Electro-Optics Inc., 445, St-Jean-Baptiste, Ste. 160, Quebec, QC G2E 5N7, Canada : détecteurs THz https://www.gentec-eo.com/

Hübner GmbH and Co KG, Wilhelmine-Reichard Strasse 6, 34123 Kassel, Allemagne : imageurs https://hubner-photonics.com/products/terahertz/terahertz-imagers/

Infrared Labs, 1808 East 17th Street, Tucson, AZ 85719, États-Unis : bolomètres https://www.irlabs.com/

Laser Quantum UK, Emery Court, Stockport, Cheshire SK4 3GL, Grande-Bretagne : systèmes TDS, émetteurs THz https://novantaphotonics.com/application/detail/laser-scientific-terahertz-spectroscopy/

Luna...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(223 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(223 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS