Présentation
EnglishRÉSUMÉ
Les impulsions laser femtoseconde, de durée inférieure à la picoseconde, permettent d’atteindre les plus grandes précisions du traitement laser, et cela sur la plupart des matériaux : métaux, verres, ou semiconducteurs. Les procédés industriels utilisant des lasers femtoseconde ont été fortement stimulés par l’augmentation de la puissance moyenne des lasers, passée de 1 W à 1 kW en 20 ans. Le nombre d’applications augmente sans cesse, allant du micro-usinage (microélectronique) vers le macro-usinage (automobile, aéronautique). Cet article explicite l’intérêt de telles impulsions pour les procédés laser, puis détaille les enjeux de leur mise en œuvre et présente enfin quelques exemples significatifs d’application.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Éric AUDOUARD : HDR - Expert procédés laser, société Amplitude, Pessac, France
INTRODUCTION
Les impulsions ultrabrèves constituent une nouvelle technologie laser permettant l'accès à un mode d'interaction laser-matière très original par rapport aux lasers conventionnels, continus, ou délivrant des impulsions de durées supérieures à la nanoseconde. Les impulsions laser ultrabrèves recouvrent un domaine de durée d'impulsion allant de la femtoseconde (10−15 s) à la picoseconde (10−12 s). Ces impulsions sont à l'origine d’applications très innovantes dans le domaine du traitement des matériaux. Une distinction s’opère alors entre les impulsions femtoseconde, habituellement d’une durée de quelques centaines de femtoseconde, et les impulsions picoseconde, d’une durée supérieure à 1 ps. Nous n'évoquerons pas dans cet article les applications d’imagerie, pour lesquelles une visualisation sans modification du matériau est recherchée, domaine où les technologies ultrabrèves jouent aussi un rôle. Nous n’aborderons pas non plus le domaine des très hautes énergies, utilisées pour les grands instruments de recherche comme le Laser MégaJoule (LMJ). Le champ des procédés lasers concerne une modification apportée à un matériau et adresse plutôt les applications industrielles des lasers. Cette modification peut conduire à un enlèvement de matière, appelé ablation laser. Nous insisterons donc sur les caractéristiques de l'interaction laser-matière en mode ultrabref et leur intérêt dans le développement d’applications.
Dans le cas des impulsions laser ultrabrèves, une physique de l’interaction laser-matière très originale conduit au besoin d’une expertise très spécifique pour la maîtrise des procédés. Leur développement a été rendu possible par les nombreux résultats de recherche en laboratoire, associés à une intense activité de publication scientifique. Avant même les années 2000, date du démarrage effectif des premières utilisations des impulsions femtoseconde en chirurgie ophtalmique, des applications industrielles innovantes ont été imaginées et étudiées avec les moyens disponibles. La motivation de ces études était, et est encore, la levée de verrous technologiques limitant le champ des applications concernées. En particulier, la « marque de fabrique » des procédés femtoseconde est la très grande précision de réalisation des usinages, habituellement de l’ordre de la dizaine de microns, mais pouvant assez facilement atteindre quelques centaines de nanomètres, et simultanément la non-altération des matériaux en dehors de la zone traitée.
La première période du développement des procédés femtoseconde avait donc pour objectif d'atteindre le stade industriel. En France, plusieurs centres techniques se sont très tôt engagés dans cette voie, dans un contexte de forte compétition, essentiellement en Allemagne et au Japon. Grâce au développement et à la mise sur le marché, dès les années 2000 en France, de sources laser adaptées aux applications industrielles, ces technologies ont atteint la maturité nécessaire pour passer le cap des premières industrialisations. Les applications concernées se trouvaient surtout dans le domaine médical, mais le secteur de la production industrielle a aussi très vite démarré. Des machines de micro-usinage femtoseconde font désormais partie du catalogue de nombreux fournisseurs, spécialement en Europe et en Asie.
Depuis les années 2020 et la possibilité d’utiliser des sources laser multi centaines de watts, les secteurs industriels du « macro-usinage » comme l’automobile ou l’aéronautique sont désormais accessibles aux technologies femtoseconde. Plusieurs développements majeurs sont attendus dans ces domaines, spécialement dans le cadre des efforts actuels pour une industrie plus respectueuse de l’environnement. Les techniques laser d’ablation peuvent par exemple permettre un remplacement des techniques chimiques d’érosion très polluantes. La productivité désormais atteinte pour la texturation de grandes surfaces permet d’envisager les applications de réduction des frottements mécaniques (moteurs) ou de résistance à l’air (ailes d’avion).
Les technologies de l’ultrabref sont plurielles, les procédés laser associés pouvant être très différents, elles requièrent donc une forte expertise. Pour permettre au lecteur de se repérer dans ce vaste champ de développements scientifiques et technologiques, nous proposons dans cet article le parcours suivant : nous introduirons tout d’abord la nature spécifique et originale des impulsions femtoseconde. Une description plus précise des mécanismes d’interaction laser matière nous permettra alors de pénétrer au cœur de cette spécificité. Nous montrerons ensuite le lien entre la compréhension des mécanismes et les possibilités d’optimisation des procédés. À cette étape du parcours, l’exposé de la grande variété de mises en œuvre des procédés permettra de comprendre l’ampleur du champ applicatif. Enfin, nous terminerons par une revue des principaux secteurs industriels où les procédés femtoseconde se déploient.
Le lecteur trouvera en fin d'article un glossaire et une liste des symboles utilisés.
VERSIONS
- Version archivée 1 de oct. 2011 par Éric AUDOUARD
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Optique Photonique
(222 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Mécanismes physiques d’ablation
Nous avons balayé un ensemble de paramètres significatifs des procédés ultrabrefs et décrit les principaux mécanismes d’absorption des impulsions, ce qui nous a permis d'introduire la spécificité des impulsions femtoseconde. Dans la suite, nous nous intéressons à la description plus précise des mécanismes de relaxation de l’énergie absorbée, conduisant le plus souvent à une ablation de la matière irradiée. Bien sûr, la plupart des résultats scientifiques dans ce domaine concernent des matériaux simples et bien connus dans la littérature. Si on considère des applications industrielles, les matériaux d’intérêt prennent une structure complexe (alliages par exemple) et sont souvent confidentiels. Il est alors difficile de faire le lien entre compréhension des mécanismes fondamentaux d'ablation et maîtrise des procédés. Cet effort de connaissance fondamental, du fait de la spécificité de l’interaction laser matière en mode femtoseconde, reste cependant très utile pour saisir les enjeux de la maîtrise des procédés et piloter l’innovation dans ce domaine. La brève histoire des applications femtoseconde est déjà marquée par plusieurs évolutions significatives, comme nous l’illustrerons au cours de ce paragraphe. Dans les descriptions qui suivent, nous utiliserons la grandeur de fluence, très spécifique au domaine et déjà introduite plus haut. Elle se calcule par le rapport de l’énergie de l’impulsion sur la section de la surface irradiée par le faisceau (aussi appelé spot laser). Cette grandeur caractérise donc à la fois le laser et le dispositif expérimental utilisé, elle s’exprime en général en J.cm−2.
2.1 Modèle à deux températures
Au paragraphe 1.4.1, une première description des mécanismes de relaxation de l’énergie déposée a été tracée à grands traits dans le...
Cet article fait partie de l’offre
Optique Photonique
(222 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Mécanismes physiques d’ablation
BIBLIOGRAPHIE
-
(1) - PETITE (G.) - Mécanismes fondamentaux de l'ablation laser femtoseconde en « flux intermédiaire ». - In Lasers et Technologies femtoseconde, ed. by SENTIS (M.) et UTEZA (O.), Publication de l'Université de Saint-Étienne (2005).
-
(2) - LE HARZIC (R.), HUOT (N.), AUDOUARD (E.), JONIN (C.), LAPORTE (P.), VALETTE (S.), FRACZKIEWICZ (A.), FORTUNIER (R.) - Comparison of heat affected zone due to nanosecond and femtoseconde laser pulses using transmission electronic microscopy. - Appl. Phys. Lett., 80, p. 3886 (2002).
-
(3) - LE HARZIC (R.), BREITLING (D.), WEIKERT (M.), SOMMER (S.), FOEHL (C.), DAUSINGER (F.), VALETTE (S.), DONNET (C.), AUDOUARD (E.) - Pulse-width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps. - Applied Surface Science, 249, p. 322 (2005).
-
(4) - MAUCLAIR (C.), MISHCHIK (K.), MERMILLOD-BLONDIN (A.), BONSE (J.), ROSENFELD (A.), HERTEL (I.V.), AUDOUARD (E.), STOIAN (R.) - Time-resolved observation of energy deposition in fused silica by ultrashort laser pulses in single and cumulative regime. - Conference on Lasers and Electro-Optics, OSA Technical Digest (CD), p. CMBB7 (2010).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Congrès LPM (Laser Precision Micromachining) : Congrès international sur le micro-usinage de précision, a lieu un an sur deux au Japon http://www.jlps.gr.jp
Congrès ICALEO : Congrès international sur les applications laser industrielles, a lieu tous les ans aux États-Unis, https://icaleo.org
Salon Laser Munich : Exposition laser internationale, a lieu tous les deux ans à Munich (Allemagne) http://www.world-of-photonics.net
Salon Photonics West : a lieu tous les ans à San Francisco (États-Unis), en même temps que plusieurs dizaines de conférences http://spie.org
PLI : Conférence nationale Procédés Lasers pour l’Industrie, a lieu en France tous les ans https://www.clp-laser.fr
HAUT DE PAGE2.1 Exemples d’entreprises commercialisant des sources laser ultrabrèves
France
Thales
...
Cet article fait partie de l’offre
Optique Photonique
(222 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive