Présentation
RÉSUMÉ
Cet article propose des solutions pour mener à bien la mise en conformité sismique des constructions selon les normes en vigueur. Ces solutions sont applicables aux constructions en acier, en bois, en béton armé ou aux maçonneries. Le changement du statut sismique d’une construction ou sa réparation après un séisme entraînent des modifications ou des réparations structurelles majeures. Celles-ci nécessitent la mise en œuvre de méthodes de confortement particulières où l’acier est très apprécié car facile à insérer dans la configuration structurelle d’origine. Au début de l'article sont traités, l’amélioration de la résistance au feu, des performances acoustiques et le traitement de la corrosion des constructions en acier.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article describes solutions to complete the seismic retrofitting of buildings according to updated specifications and/or changes of situation. These solutions are applicable to steel, timber, reinforced concrete structures and masonries. The change in the seismic status of a construction or its repair after an earthquake imply changes or major structural repairs that require implementing special methods of reinforcement. Steel is popular because it is easy to insert into original structural configurations. Improved fire resistance, acoustic performance and treating corrosion of metal constructions are covered in the first part.
Auteur(s)
-
Pierre ENGEL : Ingénieur, Master of Sciences, Doctor in Philosophy - Professeur des Écoles Nationales supérieures d’Architecture
INTRODUCTION
Cet article est consacré à la consolidation de bâtiments vis-à-vis d’un risque sismique, ainsi qu’à la réparation de constructions ébranlées lors d’un tremblement de terre. Il fait un état de l’art de la réhabilitation sismique d’ouvrages à partir de solutions en acier tout en présentant des technologies récentes comme, par exemple, la mise en place de diaphragmes métalliques ou encore les solutions d’amortisseurs à base d’alliages à mémoire de forme.
Toutes ces techniques ont été développées au Japon, aux États-Unis ou en Europe, c’est-à-dire dans des pays comportant des zones à risques sismiques sévères (en Italie par exemple pour ce qui concerne l’Europe). La France est très concernée par les séismes, cette menace vaut pour la métropole mais surtout pour les territoires comme les Antilles, fortement menacés par l’aléa sismique. Le Plan Séisme (voir lien dans le Pour en savoir plus) et le nouveau zonage des départements d’outre-mer prévoient d’ailleurs la remise à niveau de la résistance sismique des constructions publiques. Par voie de conséquence, ils impliquent des travaux de confortation majeurs nécessitant la mise en place de techniques de renforcement pour lesquelles l’acier est susceptible d’apporter des réponses de qualité, comme nous allons le voir par la suite.
Les approches réglementaires sont désormais régies par l’Eurocode 8 dont la partie 1-4 traite du renforcement et de la réparation des bâtiments. Des précisions sur les dispositifs antisismiques sont apportées par la norme EN 15129.
La réhabilitation sismique est un sujet à part entière avec une multitude de cas difficiles à appréhender globalement de manière réglementaire. En effet, cet exercice fait appel à l’état de l’art et au bon sens critique de l’ingénieur qui doit interpréter et adapter les textes réglementaires. Au-dessus d’une magnitude de degré 6.0 sur l’échelle de Richter, la désolation qui suit un tremblement de terre est impressionnante. Une fois les répliques sismiques purgées, et lorsqu’il n’y a plus d’espoir de retrouver des survivants, il faut sécuriser les bâtiments ébranlés et décider rapidement ceux qui sont viables et de ceux qui sont définitivement hors d’état de fonctionner pour les démolir.
Les impacts d’un séisme ne sont pas forcément égaux dans tous les quartiers d’une même ville où les différentes catégories de construction d’un même lieu peuvent être influencées par la topographie. La nature du sous-sol et la constitution propre de l’ouvrage (techniques de construction et matériaux). Évidemment, les moyens de réparation mis en œuvre doivent tenir compte de ces derniers paramètres. L’évaluation de chaque construction se fait au cas par cas, après une inspection fine des dommages. L’après séisme est également une bonne occasion pour revoir l’approche parasismique.
Les séismes successifs qui eurent lieu dans une région comme celle de San Francisco ont amené à effectuer des réparations ou des confortements des constructions qui ont survécu aux différents tremblements de terre. De par sa flexibilité de mise en œuvre, mais aussi grâce au grand nombre de solutions antisismiques qu’il permet de développer, l’acier peut jouer un rôle déterminant dans tous ces confortements et cela, quel que soit le matériau à l’origine de la construction.
Avant de décider d’un protocole de réparation, les premiers confortements post-séisme consistent à réparer les capacités structurelles des constructions ébranlées pour qu’elles puissent au moins soutenir les charges climatiques et les charges d’exploitation habituelles. Ces techniques de renforcement sont exposées dans les articles [C 2 351] et [C 2 352].
Le présent article, quant à lui, traite plus particulièrement de confortements d’ampleur d’avant séisme destinés à renforcer des bâtiments anciens qui n’ont pas été conçus pour faire face à cet aléa. Une partie de l’article donne également des solutions de renforcement qui peuvent être appliquées sur des bâtiments faiblement ébranlés afin de les mettre en sécurité et de les renforcer autant que nécessaire.
Les techniques de renforcements sismiques des constructions ont beaucoup évolué ces dernières années. Les multiplications des séismes de forte magnitude, mais aussi l’élargissement des zones à risque dans le monde, ont contribué à développer les recherches pour faire face à ces catastrophes et à leurs conséquences. Les travaux des chercheurs portent sur la conception des structures neuves, sur leurs réparations mais aussi sur la consolidation et la protection des bâtiments existants placés dans des zones nouvellement réputées à risques.
MOTS-CLÉS
acier normes résistance à corrosion résistance au feu risques sismiques construction parasismique construction bois construction acier
KEYWORDS
steel | standards | resistance to corrosion | fire resistance | seismic risks | seismic building | wood building | steel construction
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Vieillissement, pathologies et réhabilitation du bâtiment
(52 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Présentation
2. Confortement et renforcement des structures avec des solutions acier
2.1 Principe des renforcements sismiques avec l’acier
Les renforcements des constructions ébranlées par un séisme, ou pouvant être soumises aux aléas sismiques, sont curatives lorsqu’ils sont menées au regard de l’intensité de cette exposition sismique.
Cette intensité est donnée par le zonage du lieu où se situe la construction. Il est à noter qu’elle peut varier dans le temps en fonction de l’évolution de l’activité sismique.
La réparation de structures ébranlées par des séismes est très souvent tentée ; d’abord pour des raisons économiques (il est généralement moins onéreux de réparer que de démolir et de reconstruire), mais aussi pour préserver des constructions qui possèdent une certaine valeur (bâtiments historiques par exemple).
C’est le cas, par exemple, à San Francisco depuis 1982 ou encore à Kobe, après le séisme de 1995. Pour ces deux régions, on notera que beaucoup de constructions ont été réparées en employant des solutions métalliques.
Les solutions structurelles en acier qui sont disponibles pour conforter les structures en maçonnerie, en béton armé ou en bois, sont nombreuses. Leur utilisation permet de rétablir l’intégrité structurelle des ouvrages abîmés et de protéger les structures fragiles menacées par des actions sismiques futures.
Synthétisées en figure 6 et au tableau 1, et détaillées en s’appuyant sur plusieurs exemples dans les paragraphes suivants, il existe un grand nombre de solutions de confortement, chacune possédant une spécificité et un domaine d’application propre, passif ou actif.
On notera cependant qu’en zone sismique, plus le fonctionnement d’une structure est complexe, plus il est souhaitable qu’elle soit réalisée en acier ; la réparation...
Cet article fait partie de l’offre
Vieillissement, pathologies et réhabilitation du bâtiment
(52 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Confortement et renforcement des structures avec des solutions acier
BIBLIOGRAPHIE
-
(1) - ENGEL (P.) - Guide de la réhabilitation avec l’acier, à l’usage des architectes et des ingénieurs. - Construire Acier, ISBN : 9782725800172, Paris 2012.
-
(2) - BERTERO (V.) - Seismic upgrading of existing structures. - Proceedings, 5as Jornadas Chilenas de Sismología Ingeniería Antisísmica (1989).
-
(3) - MAZZOLANI (F.M.) - Utilisation de l'acier pour la consolidation et le renforcement en cas de séisme. Exemples de bâtiments en Italie. - Séminaire APK « Les atouts de l’acier dans la construction parasismique. Eurocode 8 ». ENS de Cachan, 30 & 31 mars 2011 (http://www.apkweb.org).
-
(4) - ENGEL (P.) - Manuel de la réhabilitation, à l’usage des architectes et des ingénieurs, - Presse Polytechnique Universitaires Romandes, ISBN : ISBN 978-2-88915-119-6, Lausanne 2017.
DANS NOS BASES DOCUMENTAIRES
NORMES
-
Eurocode 8 : Conception et dimensionnement des structures pour leur résistance aux séismes. Partie 1-1 : Règles générales – Actions sismiques et prescriptions générales pour les structures. - Afnor NF EN 1998-1 - septembre 2005
-
Eurocode 8 : Conception et dimensionnement des structures pour leur résistance aux séismes. Partie 1-3 : Règles générales, règles particulières pour divers matériaux et éléments. - Afnor NF EN 1998-1-3 -
-
Eurocode 8 : Conception et dimensionnement des structures pour leur résistance aux séismes. Partie 1-4 : Règles générales – Renforcement et réparation des bâtiments (P06-033PR décembre 1999). - Afnor NF EN 1998-1-4 - décembre 1999
-
Dispositifs antisismiques Norme européenne couvrant la conception de dispositifs installés dans des structures dans le but de modifier leur réponse à l'action sismique. - Afnor NF EN 15129 - janvier 2010
-
Eurocode 3 : Calcul des structures en acier Partie 1-1 : Règles générales et règles pour les bâtiments. - Afnor, NF EN 1993-1-1/A1 - 2014
-
...
ANNEXES
-
ArcelorMittal
-
Constructalia, portail de l’acier pour la construction développé par Arcelor
-
ConstruirAcier, site promotionnel de l’acier
-
APK, association pour la promotion de l’enseignement de la Construction Métallique
-
Plan Séisme, site internet dédié du Ministère de l’intérieur
Cet article fait partie de l’offre
Vieillissement, pathologies et réhabilitation du bâtiment
(52 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses