Présentation

Article

1 - CONTEXTE ET SPÉCIFICITÉS DU GÉNIE CIVIL

  • 1.1 - Périmètre du champ couvert
  • 1.2 - Contexte du milieu d’emploi
  • 1.3 - Attentes des gestionnaires d’ouvrages vis-à-vis des méthodes employées
  • 1.4 - Adaptation de l’instrumentation ou des systèmes d’instrumentation aux exigences de chantier du GC
  • 1.5 - Évolution des besoins

2 - AUSCULTATION DES STRUCTURES DE GÉNIE CIVIL

3 - SUIVI, AIDE À LA MAINTENANCE DES STRUCTURES DE GC : RÉSEAUX DE CAPTEURS SANS FIL

4 - CONCLUSIONS ET PERSPECTIVES

Article de référence | Réf : R1410 v1

Auscultation des structures de génie civil
Évaluation et contrôle non destructifs en génie civil

Auteur(s) : Jean-Marie CAUSSIGNAC, Vincent LE CAM, Odile ABRAHAM, Xavier DÉROBERT, Géraldine VILLAIN

Date de publication : 10 déc. 2013

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

En génie civil, les techniques d'évaluation et de contrôle non destructifs, qui sont de plus en plus utilisées, constituent une aide efficace au suivi et à la maintenance du patrimoine bâti. Sans prétention d'exhaustivité, quelques exemples de méthodes bénéficiant des derniers progrès technologiques (RADAR, ultrasons, tomographie sismique, Ultrasonic Pulse Echo, Impact Echo, instrumentation sans fil) appliquées aux structures et aux matériaux, permettent ici d'illustrer ces propos.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Jean-Marie CAUSSIGNAC : Directeur de recherche émérite - Retraité de l’Institut français des sciences et technologies des transports, de l’aménagement et des réseaux (IFSTTAR)

  • Vincent LE CAM : Ingénieur divisionnaire des travaux publics de l’État, Université de Nantes Angers Le Mans (LUNAM) - IFSTTAR, département Mesure, Auscultation et Calcul scientifique (MACS), Bouguenais

  • Odile ABRAHAM : Ingénieur divisionnaire des travaux publics de l’État, Université de Nantes Angers Le Mans (LUNAM) - IFSTTAR, département Mesure, Auscultation et Calcul scientifique (MACS), Bouguenais

  • Xavier DÉROBERT : Ingénieur divisionnaire des travaux publics de l’État, Université de Nantes Angers Le Mans (LUNAM) - IFSTTAR, département Mesure, Auscultation et Calcul scientifique (MACS), Bouguenais

  • Géraldine VILLAIN : Ingénieur divisionnaire des travaux publics de l’État, Université de Nantes Angers Le Mans (LUNAM) - IFSTTAR, département Mesure, Auscultation et Calcul scientifique (MACS), Bouguenais

INTRODUCTION

L’introduction des END et des CND en génie civil, voire de leur évolution, nécessite au préalable d’en rappeler quelques grandes lignes quant à leur définition et à leur usage. Il s’agit, dans la plupart des cas, d’outils ou de méthodes de mesure ou de contrôle capables de donner accès à une ou plusieurs grandeurs physiques, physico-chimiques ou chimiques caractérisant le phénomène étudié, par l’obtention, soit de valeurs quantitatives, soit d’informations par seuillage de valeurs lorsque l’on s’intéresse à de la détection d’évènements. Aujourd’hui, la notion d’instrumentation ne se limite plus à « l’instrument » mais prend en compte le capteur ou le réseau de capteurs, la saisie, la transmission et le traitement des informations. Elle englobe aussi l’action qui débouche sur ce système ou ce moyen et la démarche intellectuelle et pratique qui préside à cette action. Il s’avère nécessaire de concevoir des méthodes, d’imaginer des moyens, d’inventer des outils d’investigation pour caractériser l’état du système, d'agir sur celui-ci, de comprendre son fonctionnement, d'alimenter des modèles de comportement. Ceci suppose de mener une réflexion globale sur le système prenant en compte la réflexion cognitive et les outils de mesure ou d’investigation. Dans ce contexte, la physique de l’onde et de son interaction avec l’ouvrage doit être maîtrisée, de même que la génération de cette onde et l’interprétation de ce que l’on en mesure. De plus, la modélisation, directe ou inverse, et l’approche multi-échelle sont nécessaires pour mieux concevoir l’appareillage de génération en optimisant le procédé vis-à-vis de la structure étudiée et de tirer des observations un maximum d’informations quantitatives, voire d’aider à la prise de décision.

Selon les niveaux de connaissance, d’apprentissage et d’automatisme communiqués à l’ensemble, on couvre alors le champ communément nommé des « systèmes intelligents » ou de « smart systems ». Dans la pratique, l’instrumentation peut avoir des finalités variées parmi lesquelles :

  • comme moyen de détection et de suivi d’états pathologiques (dégradations, déformations, fissurations…) de matériaux et/ou de structures ;

  • comme outils à demeure et à temps réel ou quasi réel de contrôle de santé des ouvrages et d’aide à leur maintenance ;

  • comme maillon essentiel d’une chaîne d’asservissement, dans le cadre d’un contrôle actif ou semi-actif d’une structure ;

  • comme outil de relevé ou de caractérisation d’un état, d’un comportement ou d’un niveau de service.

Le génie civil, très réceptif à l’ensemble des moyens lui permettant d’aider à optimiser une construction en phase de réalisation et ensuite son suivi, à vérifier la conformité aux normes en vigueur ou à assurer une maintenance des structures à court, à moyen et à long terme, utilise maintenant de façon courante et ciblée les techniques modernes opérationnelles. À titre d’illustration, certaines techniques END telles que : RADAR, ultrasons, tomographie sismique, ultrasonic pulse echo, impact echo et instrumentation sans fil, complétées d’exemples d’applications, sont présentées ci-après. Sans prétention d’exhaustivité et pour limiter les propos, les méthodes électriques, infrarouges, nucléaires, les capteurs à fibres optiques et autres qui font déjà l’objet de nombreuses publications ne sont pas abordées ici.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-r1410


Cet article fait partie de l’offre

Vieillissement, pathologies et réhabilitation du bâtiment

(52 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

ABONNEZ-VOUS

Version en anglais English

2. Auscultation des structures de génie civil

2.1 Technique RADAR

La technique RADAR (ou ground-penetrating RADAR, GPR) fait partie des techniques d'auscultation polyvalente non destructives, qui peut être sans contact et à grand rendement, dont la principale application est liée à l'information géométrique, sous la forme de localisation d'hétérogénéités internes ou de mesures d'épaisseur de matériaux ou d’éléments de structure . L’avantage essentiel de cette technique est de pouvoir pratiquer les auscultations directement à partir de la surface des matériaux et structures, sans obligation d’aménagement particulier. En revanche, les performances métrologiques dépendent des caractéristiques du milieu de propagation, de la profondeur de pénétration des ondes et des fréquences utilisées.

HAUT DE PAGE

2.1.1 Principe

L'antenne RADAR est composée d'une antenne émettrice et d'une antenne réceptrice, généralement disposées dans un seul boîtier. La première émet des impulsions électromagnétiques (EM) qui se réfléchissent partiellement sur des hétérogénéités ou des interfaces de couches ayant des propriétés diélectriques différentes. Les échos successifs sont enregistrés à travers la mesure de signaux temporels. La vitesse v des impulsions est liée à la constante diélectrique εr du milieu ausculté par l'équation :

v= c ε r

avec :

c
 : 
vitesse de la lumière.

L'acquisition de nombreux...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Vieillissement, pathologies et réhabilitation du bâtiment

(52 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

ABONNEZ-VOUS

Lecture en cours
Auscultation des structures de génie civil
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - DANIELS (D.J.) -   Surface-penetrating RADAR  -  Instit. Electrical Engineers, London, UK, 2nd ed., 726 pp. (2004).

  • (2) - SAARENKETO (T.), SCULLION (T.) -   Road evaluation with ground penetrating RADAR  -  J. Appl. Geophys., Vol. 43, pp. 119-138 (2000).

  • (3) - BREYSSE (D.), ABRAHAM (O.) -   *  -  . – Méthodologie d'évaluation ND de l'état d'altération des ouvrages en béton. Ed. Pts et Ch., 555 p. (2005).

  • (4) - HUGENSCHMIDT (J.), LOSER (R.) -   Detection of chlorides and moisture in concrete structures with GPR  -  Mat. & struct., Vol. 41, pp. 785-792 (2008).

  • (5) - SBARTAÏ (Z.M.), LAURENS (S.), RHAZI (J.), BALAYSSAC (J.P.), ARLIGUIE (G.) -   Using RADAR direct wave for concrete condition assessment : correlation with electrical resistivity  -  Journal of applied Geophysics, Vol. 62, pp. 361-374 (2007)

  • (6)...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Vieillissement, pathologies et réhabilitation du bâtiment

(52 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

ABONNEZ-VOUS