Présentation
EnglishRÉSUMÉ
Dans le cadre d’une chimie organique respectueuse de l’environnement, les liquides ioniques semblent constituer une réponse prometteuse au remplacement des solvants organiques. En effet, ces liquides possèdent des caractéristiques intéressantes, ils semblent peu toxiques et sont ininflammables. Leur utilisation stimule l'imagination des chercheurs, tant pour ces propriétés appropriées à la chimie écocompatible que pour les défis scientifiques nouveaux qu'ils suscitent : modulables à l'infini, leurs propriétés physico-chimiques peuvent être finement ajustées en fonction de leur structure.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Max Malacria
-
Jean-Philippe Goddard
-
Cyril Ollivier : UPMC, université de Paris VI, Laboratoire de Chimie organique (UMR CNRS 7611), Institut de chimie moléculaire (FR 2769).
-
Jean-Christophe PLAQUEVENT : Directeur de recherche au CNRS
-
Yves GÉNISSON : Chargé de recherche au CNRS
-
Frédéric GUILLEN : Maître de conférences - CNRS-UMR 5068, Laboratoire de synthèse et physico-chimie de molécules d'intérêt biologique (LSPCMIB) - Université Paul-Sabatier (Toulouse)
INTRODUCTION
Aujourd'hui, l'un des objectifs majeurs de la chimie organique de synthèse réside en la recherche, la découverte et l'exploitation de méthodes respectueuses de l'environnement. En effet, le développement durable s'impose comme un enjeu crucial, dont l'importance a été récemment symbolisée par l'attribution du prix Nobel de la paix en 2007. Aux défis gigantesques répondent de multiples approches. L'objectif est d'atteindre un développement qui soit à la fois socialement équitable, écologiquement durable et économiquement viable selon la règle des 3 « E » (équité, environnement, économie, interprétation francophone des 3 « P » : people, planet, profit). Contribuer à cette démarche devient essentiel, notamment dans le secteur de la chimie. Les attentes sont pressantes de la part du grand public, des organismes réglementaires et de tous les secteurs industriels où la chimie trouve ses applications. La chimie a aussi un rôle à jouer dans le cadre de problèmes environnementaux comme le réchauffement de la planète associé aux émissions de gaz à effet de serre. Cette nouvelle chimie doit viser la prévention. Elle doit concevoir et mettre en œuvre des procédés propres et sûrs, moins coûteux en matières premières, en énergie, et limitant la production de déchets et d"effluents. Le traitement et l'élimination de ces derniers doivent donc être pris en considération dès les phases précoces de recherche de nouveaux procédés. La mise au point d'une chimie « verte » n'a pas pour but d'éliminer les déchets, mais plutôt d'éviter d'en produire ! Cette évolution est déjà engagée : méthodes de synthèse plus efficaces, activation, catalyse, optimisation et intensification de procédés, techniques de traitement performantes, autant de pistes actuellement défrichées par les chimistes.
La grande majorité des réactions de synthèse en chimie fine est réalisée dans des solvants organiques. Cependant, comme rappelé ci-dessus, la question de l'environnement suscite une profonde inquiétude dans le monde de la recherche industrielle et académique. L'un des aspects prioritaires vers lequel convergent nombre d'approches consiste à remplacer ou même à supprimer les solvants organiques, membres de la famille des COV (composés organiques volatils) responsables de la dégradation de la couche d'ozone, et participant ainsi au réchauffement climatique. Dans le domaine de la synthèse, les solvants organiques sont très souvent indispensables pour la réalisation des réactions, en permettant la mise en contact effectif des molécules réactives, en ajustant la viscosité du système réactionnel, ou en assurant un rôle de « tampon thermique » , indispensable dans le cas de réactions exothermiques. Par contre, cette commodité se traduit par des inconvénients désormais inacceptables dans notre société : toxicité, souvent inflammabilité, émission de COV, etc. Si ces solvants ne disparaîtront pas complètement, il est vrai que les concepts de chimie verte nous conduisent à repenser systématiquement leur utilisation. Certains ont proposé de développer des réactions sans solvant. D'autres ont envisagé l'utilisation de nouveaux milieux comme les microémulsions, les fluides supercritiques, les phases fluorées et les liquides ioniques. Parmi ces propositions, ces derniers se révèlent particulièrement prometteurs. Plusieurs de leurs caractéristiques répondent aux critères recherchés, comme leur tension de vapeur quasi nulle qui interdit leur évaporation (et donc toute pollution atmosphérique) et facilite leur recyclage. La plupart d'entre eux semblent peu toxiques et sont ininflammables. Leur utilisation stimule l'imagination des chercheurs, tant pour ces propriétés appropriées à la chimie écocompatible que pour les défis scientifiques nouveaux qu'ils suscitent : modulables à l'infini, leurs propriétés physico-chimiques peuvent être finement ajustées en fonction de leur structure. Pour la première fois, le chimiste dispose de la possibilité d'assortir un solvant à une réaction en définissant, a priori, ses caractéristiques (température de fusion, viscosité, miscibilité avec d'autres solvants, fenêtre électrochimique, polarité, etc.).
L'ambition de cet article est d'amener le lecteur à disposer des informations modernes sur les atouts (et éventuelles limitations) des liquides ioniques en synthèse organique. Nous ne viserons pas ici l'exhaustivité d'une revue bibliographique, mais plutôt une analyse pertinente et « critique » de ce nouveau champ de la chimie, en nous appuyant sur des publications-clés, c'est-à-dire celles décrivant la démonstration des concepts majeurs et des avancées réelles dans le domaine concerné.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Médicaments et produits pharmaceutiques
(126 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Procédés spécifiques à la synthèse en milieu ionique
La chimie en solvants ioniques impose une modification des « réflexes » de l'expérimentateur et se révèle, à ce titre, stimulante pour l'exploration de nouveaux procédés.
Par exemple, le simple fait que le solvant ne soit plus une espèce volatile interdit son habituelle évaporation en fin d'expérience. La récupération des produits de réaction doit donc être abordée différemment. La méthode la plus élégante et simple, lorsqu'elle est rendue possible par une faible température d'ébullition du produit ainsi qu'une stabilité thermique raisonnable, consiste en l'inversion du processus, c'est-à-dire la distillation du produit lui-même. R. Grée et coll. ont, par exemple, récemment décrit la synthèse de composés mono- et gem-difluorés par fluoration au DAST (diethylaminosulfurtrifluoride) d'alcools et cétones en milieu [omim][PF6]. La distillation permet de récupérer avec de bons rendements le produit, alors que le liquide ionique est lavé à l'eau (pour éliminer les résidus provenant du réactif de fluoration) puis séché sous vide avant recyclage [102].
Bien entendu, nombre de produits de réaction ne sont pas distillables, et leur séparation doit relever soit d'une extraction à l'aide d'un solvant usuel, éventuellement au moyen d'un extracteur liquide-liquide qui minimise le volume de solvant moléculaire utilisé [103] [104], soit idéalement à l'aide d'un autre solvant vert comme le dioxyde de carbone supercritique [105]. Dans les deux cas, la récupération du solvant ionique est également réalisable.
On pourra également tirer parti de l'immiscibilité du liquide ionique utilisé avec les solvants moléculaires pour extraire le produit de la réaction. Par exemple, à...
Cet article fait partie de l’offre
Médicaments et produits pharmaceutiques
(126 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Procédés spécifiques à la synthèse en milieu ionique
BIBLIOGRAPHIE
-
(1) - JEANNIN (Y.) - Chimie organométallique. - [AF 6 500], [AF 6 501], [AF 6 502], [AF 6 503], [AF 6 504], [AF 6 505], [AF 6 506]. Base documentaire « Physique-Chimie » (2000).
-
(2) - PETRIER (C.), GONDREXON (N.), BOLDO (P.) - Ultrasons et sonochimie. - [AF 6 310]. Base documentaire « Physique-Chimie » (2008).
-
(3) - CHAUSSARD (J.) - Électrosynthèse organique. - [J 5 970]. Base documentaire « Archives Chimie » (1991).
-
(4) - SENNIGER (T.) - Catalyse de polymérisation. - [J 1 260]. Base documentaire « Opérations unitaires. Génie de la réaction chimique » (1998).
-
(5) - FONTANILLE (M.), VAIRON (J.-P.) - Polymérisation. - [A 3 040]. Base documentaire « Plastiques et Composites » (1994).
-
...
ANNEXES
MOUTIERS (G.), BILLARD (I.) - Les liquides ioniques : des solvants pour l'industrie. - [AF 6 712] Éditions TI, Techniques de l'Ingénieur, Base documentaire « Physique-Chimie » (2005).
FERROUD (C.), GUY (A.) - Liquides ioniques à température ambiante. - [K 313] Éditions TI, Techniques de l'Ingénieur, Base documentaire « Constantes Physico-Chimiques » (2007).
WASSERSCHEID (P.), WELTON (T.) - Ionic liquids in synthesis. - Wiley-VCH (2003).
WASSERSCHEID (P.), WELTON (T.) - Ionic liquids in synthesis, 2nd edition. - Wiley-VCH (2008).
MALHOTRA (S.V.) - Ionic liquids in organic synthesis. - ACS Symposium Series, no 950, Oxford University Press, USA (2007).
WELTON (T.) - Is catalysis in ionic liquids a potentially green technology ? - Green Chem., 10, p. 483 (2008).
DEETLEFS (M.), SEDDON (K.R.) - Improved preparations of ionic liquids using microwave irradiation. - Green Chem., 5, p. 181 (2003).
WU (W.), LI (W.), HAN (B.), ZHANG (Z.), JIANG (T.), LIU (Z.) - A green and effective method to synthesize ionic liquids : supercritical CO2 route. - Green Chem., 7, p. 701 (2005).
CARTER (E.B.), CULVER (S.L.), FOX (P.A.), GOODE (R.D.), NTAI (I.), TICKELL (M.D.), TRAYLOR (R.K.), HOFFMAN (N.W.), DAVIS Jr (J.H.) - Sweet success : ionic liquids derived from non-nutritive sweeteners. - Chem. Commun., p. 630 (2004).
FUKUMOTO (K.), YOSHIZAWA (M.), OHNO (H.) - Room temperature ionic liquids from 20 natural amino acids. - J. Am. Chem. Soc., 127, p. 2398 (2005).
HANDY (S.T.), OKELLO (M.), DICKENSON (G.) - Solvents from biorenewable sources : ionic liquids based on fructose. - Org. Lett., 5, p. 2513 (2003).
GATHERHOOD (N.), GARCIA (M.T.), SCAMMELLS (P.J.) - Biodegradable ionic liquids : Part. I. Concept, preliminary targets and evaluation. - Green Chem., 6, p. 166 (2004).
ZHANG (S.), SUN (N.), HE (X.), LU (X.), ZHANG (X.) - Physical properties of ionic liquids : database and evaluation. -...
Cet article fait partie de l’offre
Médicaments et produits pharmaceutiques
(126 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive