Présentation
EnglishRÉSUMÉ
Les cellules d’insectes sont largement utilisées pour produire des protéines recombinantes matures et actives. Associées aux vecteurs baculovirus, elles sont particulièrement adaptées pour la production de vaccins recombinants, pour des applications vétérinaires ou chez l’homme. En raison de la nature binaire de ce système, le développement de procédés de production nécessite l’intégration et un réglage fin de paramètres liés d’une part au virus et, d’autre part, aux cellules.
Cet article présente les différents modules qui composent le système de production basé sur les cellules d’insecte et le baculovirus. Les faiblesses identifiées ainsi que les axes majeurs de développement de cette technologie sont également décrits.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Hassan CHAABIHI : Directeur Agate Bioservices, Bagard, France
INTRODUCTION
La recherche biopharmaceutique moderne et le développement de nouvelles solutions thérapeutiques s'appuient le plus souvent sur l'étude des gènes et des protéines pour lesquelles ils codent. L'avènement de technologies de séquençage de génomes entiers à haut débit et la disponibilité de la puissance de calcul nécessaire à l'exploitation des données générées ont considérablement renforcé le rôle du génie génétique et de la biologie moléculaire. C'est ainsi que les mécanismes fondamentaux de la vie – que sont la transcription de l'ADN, puis la traduction des ARN messagers – sont exploités dans une large panoplie de systèmes vivants pour synthétiser des protéines qui seront utilisées dans les programmes de développement pharmaceutique.
Que ce soit pour réaliser des tests de criblage in vitro de molécules chimiques, pour construire des modèles cellulaires exprimant tel ou tel récepteur, développer un anticorps monoclonal thérapeutique ou encore un vaccin recombinant, le recours à un système de production de protéines recombinantes est le plus souvent la règle.
Parmi ces systèmes, les cellules d'insecte occupent une place intermédiaire entre les bactéries (procaryotes) puis les eucaryotes unicellulaires (levures), d'une part, et, d'autre part, les cellules de mammifères supérieurs telles que les CHO (Chineese Hamster Ovary cells). La bactérie Escherichia coli a été le premier système de production développé pour la production d'une protéine thérapeutique, l'insuline humaine. Cet organisme, par sa simplicité d'utilisation, sa rapidité, ses rendements de production et son faible coût, est très souvent évalué en première intention. Cependant, l'absence de modifications protéiques post-traductionnelles importantes, comme les glycosylations, les maturations protéolytiques ou la formation de certains ponts disulfure, rend assez souvent indispensable le recours à des systèmes eucaryotes, et plus particulièrement quand l'ingénierie génétique ne permet pas de lever les obstacles.
À l'autre bout de la chaîne, les cellules de mammifères (CHO principalement) sont aujourd'hui le système de choix pour produire les protéines thérapeutiques complexes. Les anticorps monoclonaux, dont une trentaine sont approuvés et mis sur le marché, sont l'exemple par excellence de protéines multimériques complexes produites dans ces cellules.
Les cellules d'insecte sont très largement utilisées pour produire des protéines pour la recherche biopharmaceutique. Elles s'imposent comme une alternative très intéressante pour accomplir les modifications co- et post-traductionnelles complexes requises pour un grand nombre de protéines, notamment humaines. Grâce au vecteur baculovirus, elles sont rapides à mettre en œuvre et permettent le plus souvent d'obtenir des rendements de production importants (de 100 mg à 1 g/L). Ce système d'expression présente par ailleurs une sécurité biologique accrue. Les éléments qui y sont mis en œuvre ne présentent aucun risque pathogène ni pour les vertébrés ni pour les plantes.
Malgré quelques inconvénients qui freinent encore son développement à grande échelle pour la bioproduction pharmaceutique, le système baculovirus/cellules d'insecte semble avoir trouvé dans les vaccins un premier domaine de prédilection. En effet, plusieurs vaccins, humains ou vétérinaires, produits par ce système sont sur le marché. Des procédures robustes de culture et de fermentation des cellules d'insecte existent. Les développements au niveau des outils biologiques, des procédés et des équipements sont continus, ce qui va certainement lui assurer une part de plus en plus importante en bioproduction. Dans les domaines des vaccins en particulier, le champ est immense car un grand nombre de virus ou d'autres micro-organismes pathogènes ne disposent pas encore de solutions vaccinales satisfaisantes. Par ailleurs, la mobilité grandissante à l'échelle mondiale favorise la dissémination de pathogènes et augmente les risques épidémiques. La rapidité avec laquelle certains vaccins spécifiques peuvent être produits par ce système (8 à 10 semaines pour les virus influenza, par exemple) est un atout majeur.
En parallèle de sa rapide progression dans le domaine des vaccins, le baculovirus et les cellules d'insecte connaissent un développement important dans le domaine du transfert de gènes et de la thérapie génique. Le potentiel du vecteur baculovirus dans ce cadre est parfaitement validé sur plusieurs modèles animaux. Par ailleurs, son exploitation en tandem avec les cellules d'insecte pour produire des particules du virus adéno-associé (AAV) parfaitement aptes à la transgénèse lui ouvre de nouvelles perspectives dans la production pharmaceutique.
L'objectif du présent article est de fournir une vue large de la principale technologie de production de protéines dans les cellules d'insecte, tout en illustrant son positionnement de plus en plus fort dans le domaine des vaccins recombinants. D'un point de vue technique, les méthodes de construction de vecteurs et de culture des cellules sont décrites. Les paramètres qui permettent la mise en place et l'optimisation de procédés de bioproduction sont définis. Enfin, des axes importants de développements scientifiques et technologiques sont mis en perspective afin de souligner le potentiel de ce système.
le lecteur trouvera en fin d'article un glossaire des termes et expressions importants de l'article.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Bioprocédés et bioproductions > Biotech pour la santé > Production de protéines thérapeutiques dans les cellules d'insecte > Protéines recombinantes et cellules d'insecte
Accueil > Ressources documentaires > Biomédical - Pharma > Médicaments et produits pharmaceutiques > Production des médicaments : procédés chimiques et biotechnologiques > Production de protéines thérapeutiques dans les cellules d'insecte > Protéines recombinantes et cellules d'insecte
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Protéines recombinantes et cellules d'insecte
Il existe différents types de systèmes de production de protéines basés sur les insectes (figure 1). Les plus populaires reposent sur des cellules en culture dans lesquelles la cassette d'expression (promoteur fort + séquence du gène + signal polyA) contenant le gène codant pour la protéine à produire est transférée.
Différents vecteurs génétiques peuvent être utilisés pour ce transfert comme des plasmides ou des virus, dont le baculovirus AcMNPV (Autographa californica Multiple Nuclear Polyhedrosis Virus) est le représentant majeur.
Les protéines peuvent également être produites dans les larves d'insectes. Dans ce cas, le vecteur pour transférer le gène à exprimer est véhiculé exclusivement par un virus infectieux pour la larve.
1.1 Systèmes de production en cultures cellulaires
1.1.1 Culture de cellules de lépidoptères
Les cellules issues de Spodoptera frugiperda, une noctuelle de la sous-famille des Amphipyrinae et qui est un grand ravageur de cultures en Amérique, sont largement utilisées en laboratoire. La lignée IPLB-Sf21 a été établie à partir des ovaires au stade larvaire. Elle fut utilisée par la suite pour isoler un clone cellulaire, Sf9 (ATCC, CRL-1711), souvent préféré à la lignée mère Sf21 pour la bioproduction. Il existe différentes variantes de cette lignée. Elles sont généralement issues de sélections et d'adaptations pour leur permettre notamment de pousser à très haute densité dans un milieu sans sérum animal et de produire des protéines de qualité pharmaceutique. C'est le cas, par exemple, de la lignée expresSF+ de Protein sciences Corp.
La lignée cellulaire BTI-Tn-5B1-4,...
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Protéines recombinantes et cellules d'insecte
BIBLIOGRAPHIE
-
(1) - ABE (T.), MATSUURA (Y.) - Host innate immune responses induced by baculovirus in mammals. - Curr. Gene. Ther., 10, p. 226-231 (2010).
-
(2) - AIRENNE (K.J.), HU (Y.C.), KOST (T.A.), SMITH (R.H.), KOTIN (R.M.), ONO (C.), MATSUURA (Y.), WANG (S.), YLÄ-HERTTUALA (S.) - Baculovirus : an insect-derived vector for diverse gene transfer applications. - Mol. Ther., 21, p. 739-749 (2013).
-
(3) - AIRENNE (K.J.), MAKKONEN (K.E.), MÄHÖNEN (A.J.), YLÄ-HERTTUALA (S.) - In vivo application and tracking of baculovirus. - Curr. Gene. Ther., 10, p. 187-194 (2010).
-
(4) - ALNEMRI (E.S.), ROBERTSON (N.M.), FERNANDES (T.F.), CROCE (C.M.), LITWACK (G.) - Overexpressed full-length human BCL2 extends the survival of baculovirus-infected Sf9 insect cells. - Proc. Natl. Acad. Sci., États-unis, 89, p. 7295-7299 (1992).
-
(5) - AUMILLER (J.J.), HOLLISTER (J.R.), JARVIS (D.L.) - A transgenic lepidopteran insect cell line engineered to produce CMP-sialic acid and sialoglycoproteins. - Glycobiology, 13, p. 497-507 (2003).
- ...
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive