Présentation
En anglaisRÉSUMÉ
Les protéines de soie appartiennent à la classe des protéines de haut poids moléculaire utilisées dans les domaines des biomatériaux et de la médecine régénérative. Ces protéines se caractérisent par d’excellentes propriétés mécaniques, elles sont biocompatibles et biodégradables. Ces propriétés attractives peuvent de plus être améliorées par diverses modifications chimiques, qui permettent ainsi l’attachement de facteurs de croissance, domaine d’adhésion cellulaire ou d’autres molécules d’intérêt, à la soie. Associées à la technique d’électrospinning, qui permet de produire des nanofibres, les propriétés des protéines de soie peuvent mener à de nombreuses applications dans le domaine biomédical.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Silk proteins belong to a class of unique, high molecular weight proteins that have found widespread use in biomaterials and regenerative medicine. These protein characteristics are robust mechanical properties, biocompatibility and biodegradability, which can be enhanced with a variety of chemical modifications. These modifications provide tools for the attachment of growth factors, cell binding domains and other molecules of interest to silk. Coupled to the electrospinning technique, allowing producing silk nanofibers, these useful properties of silk leads to a wide range of biomedical applications attainable.
Auteur(s)
-
Guillaume VIDAL : Docteur en biologie - Chercheur contractuel au laboratoire de biomécanique et bioingénierie (UMR 7338), Université de technologie de Compiègne
-
Tony DINIS : Ingénieur, doctorant au laboratoire de biomécanique et bioingénierie (UMR 7338), Université de technologie de Compiègne et au Biomedical Engineering department, Tufts University, MA, USA
-
Christophe EGLES : Colecteur - Docteur en neurobiologie, laboratoire de biomécanique et bioingénierie (UMR 7338) - Professeur à l'Université de technologie de Compiègne, Visiting Professor, Tufts University, School of Dental Medicine, USA
INTRODUCTION
Les protéines de soie, comme la fibroïne, sont des protéines naturelles extraites des cocons du ver à soie, cocons qui sont cultivés et utilisés depuis plusieurs centaines d'années pour la fabrication du textile de soie. La production mondiale de ces cocons est de l'ordre de 400 000 tonnes par an, essentiellement destinée à l'industrie textile et, depuis quelques années, aux applications biomédicales.
En effet, cette soie peut générer de nouvelles matières innovantes qui pourraient, à l'instar du collagène, être utilisée dans le milieu biomédical. C'est pourquoi, depuis ces vingt dernières années, de nombreuses équipes de recherche s'intéressent de près à ces protéines qui sont essentiellement constituées de biopolymères. Par ailleurs, elles fournissent des propriétés mécaniques intéressantes et présentent une absence totale de toxicité. Aussi, cette soie peut être facilement biofonctionnalisée par le biais de modifications chimiques qui permettent alors d'obtenir de nouvelles propriétés physico-chimiques. Couplées à la variété de structures possibles (gel, capsules, films et fibres), ces modulations de la chimie de la protéine élargissent encore les possibilités d'applications des biomatériaux à base de soie.
Le choix des caractéristiques physico-chimiques du biomatériau sera donc fonction de son application. Les nanofibres de protéines de soie permettent, elles, de créer de nouvelles matrices pour l'ingénierie tissulaire ou de nouveaux types de vecteurs pour la libération de médicaments-molécules actifs.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Sciences fondamentales > Nanosciences et nanotechnologies > Nanotechnologies pour l'énergie, l'environnement et la santé > Biomatériaux à base de nanofibres de soie pour des applications biomédicales > La soie comme biomatériau
Accueil > Ressources documentaires > Biomédical - Pharma > Technologies pour la santé > Biomatériaux > Biomatériaux à base de nanofibres de soie pour des applications biomédicales > La soie comme biomatériau
Accueil > Ressources documentaires > Innovation > Éco-conception et innovation responsable > Conception durable inspirée du vivant : le biomimétisme > Biomatériaux à base de nanofibres de soie pour des applications biomédicales > La soie comme biomatériau
Accueil > Ressources documentaires > Matériaux > Matériaux fonctionnels - Matériaux biosourcés > Matériaux pour la santé et l'agroalimentaire > Biomatériaux à base de nanofibres de soie pour des applications biomédicales > La soie comme biomatériau
Accueil > Ressources documentaires > Innovation > Nanosciences et nanotechnologies > Nanotechnologies pour l'énergie, l'environnement et la santé > Biomatériaux à base de nanofibres de soie pour des applications biomédicales > La soie comme biomatériau
Accueil > Ressources documentaires > Matériaux > Matériaux fonctionnels - Matériaux biosourcés > Matériaux biosourcés > Biomatériaux à base de nanofibres de soie pour des applications biomédicales > La soie comme biomatériau
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. La soie comme biomatériau
La soie est un biopolymère naturel biodégradable et biocompatible produit par deux arthropodes : l'araignée et la chenille. Elle se présente sous forme de cocons fabriqués par les vers à soie comme Bombyx mori et Anthereae pernyi ou de toiles des espèces Nephila clavipes et Araneus diadematus.
Les cocons de Bombyx mori sont composés d'un unique et même fil de soie pouvant aller jusqu'à un kilomètre. Ce fil est en majorité constitué par deux protéines, une hydrophobe, la fibroïne, et l'autre, hydrophile, la séricine .
À l'inverse des vers à soie, il est impossible d'obtenir un élevage d'araignées à l'échelle industrielle. Dans les années 1960, l'armée américaine en a fait l'expérience : en effet, lorsque ces individus sont extraits de leur milieu naturel, ils s'entredévorent.
Ce dossier traite de la fibroïne du ver à soie Bombyx mori, en présentant ses caractéristiques physico-chimiques et comment celles-ci peuvent être exploitées et manipulées afin de créer des biomatériaux innovants pour des applications biomédicales telles que l'ingénierie tissulaire et la vectorisation de molécules actives.
1.1 Structure de la fibroïne
La fibroïne de soie est un ensemble de chaînes polypeptidiques organisées en feuillets β plissés antiparallèles. La structure primaire de cette protéine se définit par une succession du motif glycine – alanine – glycine – alanine – glycine – sérine (GAGAGS)n (figure 1). Cette structure hautement cristalline contient essentiellement des liaisons hydrogène organisant les acides aminés (AA) sous forme d'hélices.
Les feuillets empilés interagissent entre eux par liaisons de van der Waals ...
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
La soie comme biomatériau
BIBLIOGRAPHIE
-
(1) - ROBSON (R.M.) - Silk composition, structure and properties. - Hand book of fibre Science and Technology (1985).
-
(2) - MITA (K.) et al - Highly repetitive structure and its organization of the silk fibroin gene. - J. Mol. Evol. (1994).
-
(3) - SASHINA (E.S.) et al - Structure and solubility of natural Silk fibroin. - Russian Journal of applied chemistry (2006).
-
(4) - GULRAJANI (M.L.) - Degumming of silk in : Silk dyeing printing and finishing. - India Institute of Technology, Hauz Khas, New Delhi (1988).
-
(5) - ALTMAN (G.H.) - Macrophage responses to silk. - Biomaterials (2003).
-
(6) - WANG (Y.) - In vivo degradation of three-dimensional silk fibroin scaffolds. - Biomaterials (2008).
-
...
ANNEXES
Patent application number : 20100196447
Patent application title : SILK BIOMATERIALS AND METHODS OF USE THEREOF
HAUT DE PAGECet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive