Présentation
EnglishRÉSUMÉ
La toxicité des xénobiotiques ne peut être expérimentée chez l’être humain. Les modèles animaux et en particulier les rongeurs sont encore très utilisés en toxicologie expérimentale, bien que l’extrapolabilité des mécanismes de toxicité chez l’animal ne soit pas toujours pertinente pour l’humain. Cet article présente différentes techniques et modèles in vitro et in silico, souvent combinés entre eux pour évaluer l’impact d’une exposition à des contaminants à l’échelle de la cellule, de l’organe et de l’organisme humain. Ces méthodes co-existent à des degrés divers de maturité dans leur conception et leur intégration à des lignes directrices en toxicologie réglementaire.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Arnaud TETE : Égale contribution comme premier auteur Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
-
Elias ZGHEIB : Égale contribution comme premier auteur Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
-
Sana AL AWABDH : Égale contribution comme second auteur Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
-
Louise BENOIT : Égale contribution comme seconde autrice Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
-
Kévin BERNAL : Égale contribution comme second auteur Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
-
Carolina DUARTE HOSPITAL : Égale contribution comme seconde autrice Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
-
Lucie LARIGOT : Égale contribution comme seconde autrice Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
-
Lorena LOPEZ SUAREZ : Égale contribution comme seconde autrice Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
-
Karine ANDREAU : Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
-
Caroline CHAUVET : Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
-
Min Ji KIM : Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France Université Sorbonne Paris Nord, Bobigny, INSERM UMR-S 1124, Paris, France
-
Meriem KOUAL : Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
-
Céline TOMKIEWICZ-RAULET : Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
-
Xavier COUMOUL : Égale supervision Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
-
Étienne BLANC : Égale supervision Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
-
Karine AUDOUZE : Égale supervisionUniversité Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
-
Sylvie BORTOLI : Égale supervision - Autrice correspondante Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
INTRODUCTION
Les enjeux de la toxicologie consistent à évaluer l’influence de xénobiotiques sur la santé et à caractériser les mécanismes de toxicité mis en jeu. Elle vise également à l’identification de nouveaux biomarqueurs (d’exposition et d’effet) et au développement de systèmes prédictifs de toxicité. L’évaluation de la toxicité des polluants environnementaux par les procédures réglementaires est historiquement liée à l’utilisation de modèles in vivo incluant en particulier le rat et la souris, mais aussi le lapin et le chien. L’observation de certaines différences dans les mécanismes de toxicité entre l’animal et l’être humain, associée à des préoccupations éthiques liées au bien-être animal ont conduit la communauté scientifique à multiplier les efforts technologiques pour produire des modèles in vitro et in silico pertinents en toxicologie. Sans être exhaustif, cet article présente différentes méthodes d’exploration des mécanismes de toxicité in vitro ainsi que différents modèles alternatifs à l’expérimentation animale. Ces modèles sont utilisés en toxicologie environnementale mais également en pharmaco-toxicologie dans le but de prédire la toxicité des médicaments ou des cosmétiques. Ils incluent des cultures de cellules humaines en 2D, des cultures organotypiques en 3D, des modèles innovants de coculture de plusieurs types cellulaires et des technologies émergentes telles que le bioprinting et les dispositifs microfluidiques « organ-on-chip ». Enfin, les approches systémiques de toxicologie computationnelle permettant d’intégrer la complexité des réponses biologiques et d’extrapoler des prédictions d’effets néfastes des contaminants sur la santé humaine sont abordées.
Domaine : Toxicologie
Technologies impliquées : Culture cellulaire 2D et 3D, omiques, microfluidique, impression 3D, toxicologie computationnelle
Domaines d’application : Recherche en toxicologie mécanistique, toxicologie prédictive, tests d’évaluation réglementaire
Contact : [email protected] ; https://t3s-1124biomedicale.parisdescartes.fr/nos-equipes-de-recherche/team-1/
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
8. Conclusion
Dans un contexte d’évidences croissantes de l’existence de liens étroits entre santé humaine et environnement, l’identification des effets biologiques induits par l’exposition à une ou plusieurs substances toxiques et des mécanismes de toxicité associés constituent un challenge important nécessitant d’amplifier les efforts de recherche en toxicologie. Dans ce domaine, l’expérimentation animale occupe encore une large place pour identifier les effets délétères des contaminants environnementaux à l’échelle d’un organisme entier, bien qu’il ne soit pas toujours possible d’extrapoler ces effets à l’être humain. De plus, des préoccupations citoyennes et sociétales fortes ont émergé ces dernières décennies pour une meilleure prise en compte du bien-être animal et pour réduire l’utilisation de modèles expérimentaux in vivo. Dans ce contexte, le développement de tests visant à étudier les mécanismes de toxicité in vitro s’est accéléré au cours des dernières années. L’élaboration de modèles non animaux d’exploration de la toxicité des substances a également connu un large essor, avec la possibilité de reconstituer dans des modèles 3D, un micro-environnement biochimique, protéique et cellulaire susceptible de mieux représenter celui de cellules au sein d’un organe in situ. Enfin, les techniques de microfluidique rendent aujourd’hui possible de mimer les échanges entre différents types cellulaires ou organes. Parallèlement, les avancées importantes dans le développement d’approches in silico ont largement contribué à exploiter les données issues de la recherche expérimentale, notamment celles issues des techniques omiques, permettant également une intégration à l’échelle systémique. Ces modèles et méthodes se situent à des degrés divers de développement et de maturation mais certains d’entre eux sont susceptibles d’être intégrés dans l’arsenal réglementaire, et pourraient être utiles pour cribler les substances chimiques développées dans le cadre de la chimie durable et de l’éco-conception. À ce jour, il existe encore une interconnexion étroite entre des connaissances issues de la recherche expérimentale et celles générées par les modèles in silico, les premières alimentant encore largement les secondes. La poursuite et l’amplification...
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - PETERS (A.), NAWROT (T.S.), BACCARELLI (A.A.) - Hallmarks of environmental insults. - Cell, 184, p. 1455-1468 (2021).
-
(2) - BARLOVATZ-MEIMON (G.), RONOT (X.), DEMONGEOT (J.) - Culture de cellules animales. - 3e éd., Lavoisier Tec & Doc, Paris (2014).
-
(3) - LIGASOVÁ (A.), KOBERNA (K.) - DNA dyes-highly sensitive reporters of cell quantification: comparison with other cell quantification methods. - Molecules, 26, p. 5515 (2021).
-
(4) - GALLUZZI (L.), VITALE (I.), AARONSON (S.A.), ABRAMS (J.M.), ADAM (D.), AGOSTINIS (P.) et al - Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. - Cell Death Differ., 25, p. 486-541 (2018).
-
(5) - KERR (J.F.), WYLLIE (A.H.), CURRIE (A.R.) - Apoptosis : a basic biological phenomenon with wide-ranging implications in tissue kinetics. - Br J. Cancer., 26, p. 239-257 (1972).
-
...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive