Présentation
En anglaisAuteur(s)
-
Didier MATHIEU : Docteur ès sciences - Ingénieur de l’Institut national des sciences appliquées (INSA) - Ingénieur de l’Institut de pétroléochimie et de synthèse organique industrielle de Marseille (IPSOI) - Professeur à l’université de la Méditerranée
-
Roger PHAN-TAN-LUU : Docteur ès sciences - Ingénieur de l’École supérieure de chimie de Marseille (ESCM) - Professeur à l’université d’Aix-Marseille II
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Le premier article concernant la planification d’expériences en formulation de ce traité a été consacré à l’exposé et à la mise en œuvre des techniques destinées à la sélection des ingrédients d’une formule et à la mise en évidence, parmi les facteurs qui caractérisent un procédé de fabrication, de ceux qui ont un réel effet sur les propriétés du produit final.
Ce second article est consacré à la mise au point d’une formule, qui correspond à son optimisation et constitue souvent l’étape suivante. Elle nécessite l’utilisation d’un modèle mathématique prévisionnel afin de pouvoir simuler le comportement des propriétés étudiées dans le domaine expérimental. Le fait que les proportions d’un mélange ne puissent varier de façon indépendante, puisque leur somme est constante et égale à 1, oblige l’expérimentateur à utiliser des matrices d’expériences et des modèles mathématiques spécifiques. Ces techniques, connues sous le nom de matrices et modèles de Scheffé, sont donc présentées ici.
Cependant, de nombreuses circonstances rendent souvent impossible la mise en œuvre de ces outils. Les domaines expérimentaux sont en effet généralement soumis à de nombreuses contraintes sur les proportions des composants, dues à des nécessités techniques (instabilité du mélange), sanitaires (norme à respecter), économiques (composant coûteux), etc. Nous étudierons donc l’impact de ces contraintes sur la forme du domaine expérimental et les techniques de planification « sur mesure » qui doivent alors être utilisées.
Parfois, les techniques citées plus haut (matrices et modèles de Scheffé, ou matrices sur mesure) sont « seulement » inappropriées. C’est notamment le cas de l’étude du comportement d’un mélange autour d’une composition donnée, particulièrement lors de l’optimisation d’une formule déjà fabriquée, et que nous étudierons dans le paragraphe intitulé « Modélisation au voisinage d’une formule donnée ».
Outre la composition de la formule, l’expérimentateur doit aussi prendre en compte des facteurs dits « de process », tels que la température de moulage, la vitesse d’extrusion, le temps de séchage, etc. Nous consacrerons à ce problème un paragraphe complet intitulé « Problèmes mixtes facteurs/composants », dans lequel nous montrerons aussi comment peut être pris en compte un composant en très faible quantité.
Enfin, la planification des expériences ne serait pas complète sans l’analyse et l’interprétation des résultats. Nous illustrerons un grand nombre de techniques d’analyse, selon le type de problème présenté, en mettant surtout l’accent sur les méthodes graphiques. En particulier, nous montrerons la mise en œuvre de la technique dite de la « désirabilité » qui permet de trouver le meilleur compromis entre plusieurs propriétés parfois contradictoires.
Nous rappelons au lecteur que cette présentation se compose de deux articles :
: Planification d’expériences en formulation : criblage
[J 2 241] : Planification d’expériences en formulation : optimisation
auxquels se rattache un fascicule de documentation :
: Planification d’expériences en formulation. Pour en savoir plus
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Formulation > Formulation : concepts et outils méthodologiques > Planification d’expériences en formulation : optimisation > Optimisation multicritère et désirabilité
Cet article fait partie de l’offre
Médicaments et produits pharmaceutiques
(125 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Optimisation multicritère et désirabilité
Dès le paragraphe 1.3, nous avons signalé qu’il est possible d’optimiser simultanément plusieurs réponses [33]. Nous avons indiqué que, outre la dureté, deux autres réponses ont été mesurées au cours du même plan d’expérimentation : le temps de désintégration et la friabilité. Les objectifs à atteindre sont les suivants :
-
la dureté (en kPa) doit être au moins supérieure à 10 kPa et, si possible, supérieure ou égale à 12 kPa ;
-
le temps de désintégration (en min) serait idéal au dessous de 10 min, mais ne doit, en aucun cas, dépasser 15 min ;
-
la friabilité (en %) doit avoir une valeur maximale de 50 % et une valeur souhaitée inférieure ou égale à 30 %.
Cette étape est purement numérique et ne nécessite plus d’expérimentation : elle consiste à rechercher mathématiquement le ou les mélanges pour lesquels les trois modèles, obtenus au paragraphe 1.3 (tableau 9), donnent des réponses prévisionnelles qui satisfont au mieux aux impératifs ou formulateur.
-
En premier lieu, le formulateur...
Cet article fait partie de l’offre
Médicaments et produits pharmaceutiques
(125 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Optimisation multicritère et désirabilité
BIBLIOGRAPHIE
-
(1) - LEWIS (G.A.), MATHIEU (D.), PHAN-TAN-LUU (R.) - Pharmaceutical experimental design, chapitre 1 : screening - . Marcel Dekker Inc., New York (1999).
-
(2) - LEWIS (G.A.), MATHIEU (D.), PHAN-TAN-LUU (R.) - Pharmaceutical experimental design, chapitre 2 : factor influence study - . Marcel Dekker Inc., New York (1999).
-
(3) - LEWIS (G.A.), MATHIEU (D.), PHAN-TAN-LUU (R.) - Pharmaceutical experimental design, chapitres 5 et 6 : Response Surface Methodology, optimization - . Marcel Dekker Inc., New York (1999).
-
(4) - LEWIS (G.A.), MATHIEU (D.), PHAN-TAN-LUU (R.) - Pharmaceutical experimental design, chapitre 8 : exchange algorithms - . Marcel Dekker Inc., New York (1999).
-
(5) - LEWIS (G.A.), MATHIEU (D.), PHAN-TAN-LUU (R.) - Pharmaceutical experimental design, chapitres 9 et 10 : mixtures - . Marcel Dekker Inc., New York (1999).
-
(6) - CORNELL...
Pour tout contact avec les auteurs des articles et :
Didier MATHIEU : [ [email protected]]
Roger PHAN-TAN-LUU : [ [email protected]]
On pourra probablement trouver à terme des informations intéressantes sur la planification d’expériences dans l’un des très nombreux sites de chimiométrie dans le monde. Les liens que proposent les trois suivants permettent d’accéder à un très grand nombre d’autres :
• Société Chimique de France : [ www.scifrance.org/ ] et son groupe de Chimiométrie.
• Société de Chimiométrie belge : [ sch-www.uia.ac.be/chemomet/ ].
• North American Chapter of the International Chemometrics Society (NAmICS) [ www.iac.tuwien.ac.at/NAmICS/WWW/welcome.html ].
Le site historique d’un des fondateurs de la planification d’expériences, G.E.P. Box, dirigé ensuite par le Pr William G. Hunter peut être consulté chez :
• Center for Quality and Productivity Improvement – University of Wisconsin-Madison : [ www.engr.wisc.edu/centers/cqpi/ ].
Le site lié à un congrès international sur les mélanges (6-8 juin 2000) peut être consulté...
Cet article fait partie de l’offre
Médicaments et produits pharmaceutiques
(125 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive