Présentation

Article

1 - DE L'IMAGE BRUTE À L'IMAGE PRÉSENTÉE SUR UN ÉCRAN

2 - CORRECTION DES DÉFAUTS DU DÉTECTEUR

3 - CALIBRATION DU DÉTECTEUR

  • 3.1 - Calibration d'offset
  • 3.2 - Correction de gain par calibration

4 - OPTIMISATION DU CONTRASTE DANS L'IMAGE

  • 4.1 - Histogramme d'une image
  • 4.2 - Segmentation de l'ouverture du collimateur et du background
  • 4.3 - Application d'une LUT : optimisation de la latitude et du contraste

5 - FILTRAGE SPATIAL, RENFORCEMENT DES CONTOURS ET ÉGALISATION

  • 5.1 - Filtrage spatial linéaire d'une image
  • 5.2 - Renforcement des contours
  • 5.3 - Filtrage multi-échelle et DRM

6 - FILTRAGE DU BRUIT

  • 6.1 - Transformée d'Anscombe
  • 6.2 - Filtrage du bruit haute-fréquence : filtrage non linéaire contextuel

7 - ADDITION ET MULTIPLICATION D'IMAGES

  • 7.1 - Filtrage récursif d'images dynamiques
  • 7.2 - DSA (Digital Angiography Substraction)
  • 7.3 - Double-énergie

8 - AUTRES TRAITEMENTS

  • 8.1 - Suppression de la grille
  • 8.2 - Stitching
  • 8.3 - Rescaling de la taille des pixels
  • 8.4 - Zoom et agrandissement, rotation, retournement, inversion négative – positive, etc.
  • 8.5 - Calcul du logarithme de l'image

9 - ÉCRANS DE VISUALISATION

10 - TRAITEMENTS D'IMAGE DE HAUT NIVEAU

11 - CONCLUSION

12 - GLOSSAIRE – DÉFINITIONS

Article de référence | Réf : MED203 v1

Écrans de visualisation
Imagerie médicale par rayons X - Traitements d'image 2D

Auteur(s) : Thierry LEMOINE

Date de publication : 10 juin 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article est consacré aux traitements d'image 2D qui sont, pour l'essentiel, des corrections des imperfections des détecteurs et différents types de filtrage destinés à transformer une image « propre » en une image « clinique », c'est-à-dire une image où les détails importants pour le radiologue ont été accentués, en fonction du type d'examen pratiqué. Quelques mots sont également dits sur les écrans de visualisation à cette occasion.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

X-ray medical imaging. 2D image processing

This article deals with X-ray 2D image processing techniques, i.e. mostly the correction of detector defects and various kinds of filtering intended to turn a “clean” image into a “clinical” image, i.e. one where details relevant for a radiologist are enhanced, depending on the kind of examination being done. A few words are added on medical displays.

Auteur(s)

  • Thierry LEMOINE : Directeur technique, Thales Microwave & Imaging Subsystems, France

INTRODUCTION

L'image délivrée par un détecteur de rayons X est inexploitable en l'état. Tout d'abord, elle s'étend sur une dynamique de niveaux de gris très supérieure à ce que l'œil peut détecter et très supérieure à ce que l'écran de visualisation peut afficher : il faut donc compresser cette dynamique tout en gardant perceptibles les contrastes intéressants. De plus, tout détecteur doit être calibré pour rendre invisibles les effets de fluctuation de sensibilité (ou de gain) et aussi pour obtenir une image au noir impeccable (suppression de l'offset). Ressortent alors les éventuels défauts du détecteur (pixels morts, etc.) qu'il faut rendre invisibles. Toutes ces opérations permettent d'obtenir une image « propre », qui n'est toujours pas celle à laquelle s'attend le radiologue : elle doit être filtrée de manière à mettre en évidence tel tissu plutôt que tel autre, tel détail plutôt que tel autre, selon la nature de l'examen et selon les caractéristiques corporelles du patient. Ces traitements se sont beaucoup développés depuis les années 1995, suite à l'apparition des détecteurs numériques (cassettes CR, caméras CCD, et plus récemment détecteurs plats), et aussi grâce à la disponibilité commerciale de processeurs de plus en plus puissants.

Cet article s'intéresse aux traitements mathématiques applicables aux images fournies par un détecteur de rayons X. Son objectif n'est pas d'en donner une description théorique, et trop rigoureuse. Le lecteur n'y trouvera pas non plus d'algorithmes précis, mais il y lira une description physique et une mise en lumière des objectifs recherchés.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

image processing   |   X-ray image processing

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-med203


Cet article fait partie de l’offre

Technologies pour la santé

(131 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

9. Écrans de visualisation

Les écrans de visualisation constituent un sujet en soi, qui n'est pas propre à l'imagerie par rayons X, mais comment parler de qualité d'image sans en dire quelques mots ? Succédant aux CRT, la technologie actuelle est celle des écrans LCD, la même que celle des téléviseurs, mais les dispositifs destinés au marché de l'imagerie médicale sont fabriqués sur des chaînes dédiées car leurs performances sont supérieures en contraste, en qualité de calibration de la luminance et en résolution. Comparés aux CRT, les LCD médicaux sont plus lumineux et offrent une meilleure résolution, mais ils imposent d'être regardés de face et les noirs sont moins intenses. Nous ne nous intéresserons pas davantage aux technologies elles-mêmes, mais aux paramètres qui les caractérisent.

Le plus important est la luminance, c'est-à-dire l'intensité lumineuse émise en direction de l'œil par unité de surface d'écran (Cd/m2). L'intensité lumineuse (candela : Cd) est elle-même égale au flux lumineux total par unité d'angle solide (lm/Sr), et le flux lumineux (lumen : lm) est la puissance totale émise entre 380 et 760 nm, qui correspond à la bande passante de l'œil, pondérée par sa courbe de réponse photopique. Pour fixer des ordres de grandeur, un écran émet en moyenne de l'ordre de 100 Cd/m2, à comparer à la luminance d'un ciel d'été (3 000 Cd/m2) ou d'une lampe à fluorescence (6 000 Cd/m2).

Une image montrée sur un écran présente une luminance qui varie d'un point à un autre et on définit le contraste lumineux Clum d'un objet de luminance L noyé dans un « fond » de luminance moyenne <L> de la façon suivante :

( 7 )

Le seuil de contraste Cs est la plus petite valeur de Clum détectable par l'œil. Cs dépend à la fois de la luminosité moyenne <L> du fond de l'image (en dessous de 50 Cd/m2 environ, Cs croît quand <L> diminue, alors qu'au-dessus Cs varie assez peu – figure 8), mais aussi de la taille de l'objet, ou plus exactement de la...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies pour la santé

(131 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Écrans de visualisation
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SAMEI (E.H.), FLYNN (M.J.) -   Advances in digital radiography.  -  RSNA Syllabus (2003).

  • (2) - VANMETTER (R.) -   Image processing for projection radiography.  -  Advances in medical physics, vol. 3 (2010).

  • (3) - FLYNN (M.J.), KANICKI (J.) -   High fidelity medical imaging displays.  -  SPIE (2004).

  • (4) - COUWENHOVEN (M.), SEHNERT (W.), WANG (X.), DUPIN (M.), WANDTKE (J.), DON (S.), KRAUSS (R.), PAUL (N.), HALIN, SARNO (R.) -   Observer study of a noise suppression algorithm for computed radiography images.  -  SPIE Medical Imaging, vol. 5749 (2005).

  • (5) - AAPM -   Assessment of display performance for medical imaging systems.  -  AAPM on-line report, no 3 (2005).

  • (6) - DESERNO (T.) -   Fundamentals of medical image processing and analysis.  -  SPIE Short Courses SC086,...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies pour la santé

(131 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS