Présentation

Article

1 - ENZYMES : CATALYSEURS DE LA VIE

2 - DIFFÉRENTS MÉCANISMES D’ACTION ENZYMATIQUE

3 - ENZYMES HUMAINES ACTIVÉES

4 - ISOENZYMES

5 - CONCLUSION

6 - GLOSSAIRE

7 - SYMBOLES ET NOTATIONS

Article de référence | Réf : PHA1504 v1

Enzymes humaines activées
Enzymologie moléculaire - Catalyse enzymatique

Auteur(s) : Julien DUMOND, Serge KIRKIACHARIAN

Date de publication : 10 juin 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les organismes unicellulaires ou pluricellulaires disposent de protéines enzymatiques, catalysant diverses réactions biochimiques spécifiques. Cet article est consacré à la catalyse enzymatique. Les sites actifs de la chymotrypsine, de la ribonucléase et de la phosphotriose isomérase impliqués dans les réactions chimiques sont étudiés. L’influence des paramètres physicochimiques (énergie d’activation, température et pH) pouvant moduler l’activité catalytique est également envisagée. Les derniers paragraphes sont dédiés aux différentes cinétiques enzymatiques, aux coenzymes, aux voies d’activation d’enzymes humaines et aux isoenzymes.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Molecular enzymology - Enzymatic catalysis

Unicellular or multicellular organisms have enzymatic proteins, that catalyze various specific biochemical reactions. This article is focused on the enzymatic catalysis. The active site of Chymotrypsin, Ribonuclease and Phosphotriose isomerase involved in chemical reactions are studied. The effects of physicochemical parameters (activation energy, temperature and pH) that can modulate the catalytic activity are also analyzed. Last paragraphs are dedicated to various enzyme kinetics, coenzymes, activation pathways of human enzymes and isoenzymes.

Auteur(s)

  • Julien DUMOND : Docteur en virologie enzymologie - Consultant en entreprises pharmaceutiques, Metz, France

  • Serge KIRKIACHARIAN : Docteur ès-sciences physiques, Pharmacien - Professeur émérite de chimie thérapeutique de la faculté des sciences pharmaceutiques et biologiques de l’université Paris Sud - Praticien hospitalier chef de service honoraire des hôpitaux de Paris, France

INTRODUCTION

Les enzymes sont des catalyseurs biochimiques présentant des analogies avec les catalyseurs chimiques.

Une enzyme est l’accélérateur d’une réaction chimique précise à une température et à un pH donnés. Le facteur accélérateur est généralement compris entre 105 et 108. La réaction enzymatique est spécifique et son action se déroule à faible concentration sans qu’il s’ensuive une dénaturation. L’équilibre de la réaction n’est pas modifié et il est atteint rapidement en corrélation avec le facteur accélérateur précédemment abordé. Ces traits caractéristiques rendent ces macromolécules indispensables au métabolisme cellulaire et à sa régulation.

L’enzyme diffère d’un catalyseur chimique par sa nature protéique qui la rend sensible aux conditions physicochimiques non compatibles avec les milieux retrouvés chez les êtres vivants. Elle est aussi active à faible concentration, ce qui peut engendrer sa saturation par les réactifs qu’elle doit transformer.

Cet aspect catalytique de l’enzymologie est particulièrement intéressant lors de l’utilisation de réacteurs enzymatiques où une enzyme est immobilisée sur un support solide afin de réaliser à grande échelle, voire très grande échelle, une réaction chimique spécifique. Les données de la cinétique enzymatique, des flux de substrats, de produits et d’autres molécules nécessaires à la réaction au sein des réacteurs sont autant de paramètres à étudier avec précision. Parmi les réacteurs, peuvent être cités ceux qui permettent d’effectuer des réactions chimiques, des préparations pour l’industrie pharmaceutique, pour la cosmétologie et des préparations agroalimentaires. Plus récemment, ces applications se déroulent à l’aide de réacteurs enzymatiques à membrane. L’enzyme est liée à la surface membranaire ou située dans les pores de cette dernière. La réaction s’effectue quand le substrat traverse la membrane.

Connaître la structure et le fonctionnement d’une enzyme permet d’exploiter ce catalyseur biologique dans les meilleures conditions en vue d’optimiser son utilisation dans différents domaines industriels. De nombreux catalyseurs (glycosidases, protéases, lipases...) sont étudiés et utilisés dans des réacteurs afin de produire des molécules variées à haute valeur ajoutée. Par exemple, le marché de la production d’arômes représente plusieurs milliards d’euros par an. Il dépend d’enzymes fonctionnant au sein de levures, de bactéries ou de cellules végétales dans des fermenteurs (synthèse de lactones...) ou d’enzymes purifiées immobilisées ou non dans des réacteurs (synthèse d’hexanal, hexénal, esters d’acide gras...). De plus, dans l’industrie pharmaceutique, les enzymes permettent d’accéder à des intermédiaires et/ou à des médicaments chiraux en une étape, offrant un gain économique et écologique non négligeable par rapport à leur accès nécessitant des synthèses multi-étapes.

Le lecteur trouvera en fin d’article un glossaire et un tableau des notations et des symboles utilisés.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

enzymatic catalysis   |   active site   |   physicochemical parameters   |   enzymatic kinetics

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-pha1504


Cet article fait partie de l’offre

Médicaments et produits pharmaceutiques

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

3. Enzymes humaines activées

3.1 Activation par des ions

Les ions magnésium Mg2+ sont indispensables à l’activité des kinases catalysant les transferts de groupements phosphates. Ces enzymes sont des phosphotransférases. Dans des conditions normales, le cation Mg2+ se fixe à l’ATP et les kinases interagissent avec le coenzyme ATP sous la forme ATP-Mg2+. C’est une activation indirecte.

Les cations calcium Ca2+ sont des activateurs de certaines peptidases (catabolisme des peptides).

Les anions chlorure Cl sont des activateurs de certaines amylases (hydrolyse de l’amidon).

HAUT DE PAGE

3.2 Proenzymes

Certaines enzymes existant sous forme de précurseurs inactifs sont des proenzymes. Elles donnent les enzymes actives correspondantes suite à une transformation de leur structure moléculaire grâce à l’intervention enzymatique.

Exemple :

Trypsinogène et chymotrypsinogène (proenzymes produites au niveau des acini pancréatiques) sont activés en chymotrypsine et trypsine, enzymes uniquement actives dans la lumière duodénale suite à des protéolyses limitées et très ciblées. Les enzymes sont alors capables de fonctionner et d’assurer leur rôle à l’endroit désiré : elles réalisent la fin de la digestion peptidique au niveau du carrefour duodénal sans dégrader les structures rencontrées auparavant.

HAUT DE PAGE

3.3 Adduits enzymatiques

Certaines enzymes peuvent être transformées chimiquement par des adduits sur leur structure primaire, leur activité s’en trouve modifiée. L’adduit le plus courant dans les voies métaboliques ou voies de signalisation est un groupement phosphate ajouté sur le radical d’un acide aminé sérine, thréonine ou tyrosine pour former l’enzyme phosphorylée. Certaines enzymes sont actives sous forme phosphorylée et d’autres sous forme déphosphorylée.

Exemple :

La concentration de fructose 2,6 bisphosphate (F26BP) dans la cellule est directement liée à l’enzyme présentant une double activité : phosphofructokinase-2 / fructose-2,6-bisphosphatase...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Médicaments et produits pharmaceutiques

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Enzymes humaines activées
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - NOGUES (M.V.), VILANOVA (M.), CUCHILLO (C.M.) -   Bovine pancreatic ribonuclease A as a model of an enzyme with multiple substrate binding sites.  -  Bioch. Biophys. Acta, 1253(1), p. 16-24 (1995).

  • (2) - JASPARD (E.) -    -  http://biochimej.univ-angers.fr/Page2/COURS/4EnzymologieLicence/COURS1/111Cours.html

  • (3) - WIERENGA (R.K.), KAPETANIOU (E.G.), VENKATESAN (R.) -   Triosephosphate isomerase: a highly evolved biocatalyst.  -  Cell. Mol. life Sci., 67(23), p. 3961-3962. (2010).

  • (4) - HARRIS (T.K.), ABEYGUNAWARDANA (C.), MILDVAN (A.S.) -   NMR studies of the role of hydrogen bonding in the mechanism of phosphotriose isomerase.  -  Biochemistry, 36(48), p. 14661-1475 (1997).

  • (5) - RAINES (R.T.), SUTTON (E.L.), STRAUS (D.R.), GILBERT (W.), KNOWLES (J.R.) -   Reaction energeticcs of a mutant triosephosphate isomerase in which the active-site glutamate has been changed to aspartate.  -  Biochemistry, 25(22), p. 7142-7154. (1986).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Médicaments et produits pharmaceutiques

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS