Présentation

Article

1 - HÉMODYNAMIQUE ET BIOMÉCANIQUE CIRCULATOIRE

2 - BIOMÉCANIQUE PARIÉTALE

3 - PRINCIPALES MALADIES CARDIOVASCULAIRES FAISANT L'OBJET D'ÉTUDES BIOMÉCANIQUES

  • 3.1 - Hypertension
  • 3.2 - Athérosclérose
  • 3.3 - Anévrismes

4 - DISPOSITIFS MÉDICAUX IMPLANTABLES

5 - CONCLUSION

Article de référence | Réf : MED8100 v1

Conclusion
Biomécanique cardiovasculaire et dispositifs médicaux implantables

Auteur(s) : Stéphane AVRIL

Relu et validé le 19 oct. 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les maladies cardiovasculaires représentent l'une des premières causes de mortalité. Cet article s'intéresse aux avancées majeures dans le domaine de la biomécanique cardiovasculaire, circulatoire et pariétale, et des biomatériaux implantables dans ce domaine. L'objectif est de comprendre les enjeux futurs de la biomécanique dans la prédiction individualisée des risques d'accidents cardiovasculaires ou dans la mise en place de nouvelles thérapies régénératrices.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Stéphane AVRIL : Professeur à l'École Nationale Supérieure des Mines de Saint-Étienne

INTRODUCTION

Les maladies cardiovasculaires représentent l'une des premières causes de mortalité dans les pays industrialisés. Cependant les avancées de ces dernières années en imagerie médicale, en simulation numérique, en biomatériaux et en biomécanique ouvrent la voie à de remarquables améliorations dans le dépistage et le traitement des patients, plaçant l'ingénierie dans la prise de décision en médecine et en chirurgie vasculaires et cardiaques.

On s'intéresse dans cet article aux avancées majeures dans le domaine de la biomécanique cardiovasculaire et des biomatériaux implantables dans ce domaine. L'article traite aussi bien de biomécanique circulatoire (science de l'écoulement du sang dans les vaisseaux en utilisant les outils et le formalisme de la mécanique des fluides) que de biomécanique pariétale (science des déformations et des contraintes mécaniques dans les vaisseaux sanguins et le cœur en utilisant les outils et le formalisme de la mécanique des solides déformables). L'article présente aussi succinctement les dispositifs médicaux et les biomatériaux utilisés lors du traitement de certaines maladies cardiovasculaires qui se manifestent par des défaillances biomécaniques. Le marché de ces dispositifs médicaux est gigantesque, il représente plusieurs milliards de dollars dans le monde pour la seule pathologie des anévrismes aortiques.

Cet article est organisé en quatre parties. La première partie est dédiée à la biomécanique circulatoire et à l'hémodynamique, abordant successivement l'organisation de la circulation sanguine et son rôle, la régulation de la pression sanguine, l'onde de pouls, la rhéologie du sang et les modèles numériques en hémodynamique. La seconde partie concerne la biomécanique pariétale, notamment la structure et les caractéristiques fonctionnelles des vaisseaux sanguins et du cœur, les propriétés élastiques des vaisseaux, leur résistance mécanique, et les évolutions de ces propriétés lors de la croissance et du remodelage. La troisième partie présente quatre principales pathologies cardiovasculaires faisant l'objet d'études biomécaniques pour améliorer leur prise en charge médicale : l'hypertension, l'athérosclérose, les anévrismes cérébraux et les anévrismes aortiques. La quatrième partie est consacrée aux dispositifs médicaux implantables en contact avec le sang.

Cet article fait la synthèse de plusieurs ouvrages de référence couvrant différents sujets qui sont habituellement traités de manière séparée, mais qui sont regroupés ici, comme la biomécanique circulatoire, l'hémodynamique veineuse, la biomécanique de la paroi artérielle, la biomécanique cardiaque et les dispositifs médicaux implantables. La présentation n'est pas exhaustive mais couvre les domaines où l'effort de recherche est le plus important actuellement.

Le principal objectif de cet article est de présenter les bases scientifiques qui permettent de comprendre les enjeux de demain de la biomécanique cardiovasculaire : prédiction individualisée des risques d'accidents cardiovasculaires, outils numériques d'aide à la décision chirurgicale, nouvelles thérapies régénératrices… L'article est accessible à un large lectorat. Des approfondissements sur les notions de mécanique des fluides, de mécanique des solides ou de biologie seront nécessaires pour le lecteur non initié.

Un glossaire est présenté en fin d'article.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-med8100


Cet article fait partie de l’offre

Technologies pour la santé

(131 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

5. Conclusion

Les évolutions technologiques dans le domaine cardiovasculaire ont été nombreuses depuis 1960 et la biomécanique a toujours joué un rôle central dans ces évolutions. Ce rôle va se poursuivre afin de relever un certain nombre de défis scientifiques qui permettront de rendre la médecine cardiovasculaire de plus en plus individualisée. On peut citer par exemple, sans être exhaustif, les sujets de recherche suivants :

  • l'imagerie élastographique du cœur et de la paroi artérielle in vivo afin de reconstruire leurs cartes de propriétés mécaniques locales et réaliser une prédiction individualisée des risques d'accidents cardiovasculaires   ;

  • la télémédecine et la médecine numérique dans le domaine cardiovasculaire afin d'utiliser des modèles éléments finis personnalisés dans la planification des interventions endovasculaires  ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies pour la santé

(131 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - FUNG (Y.C.) -   Biomechanics: mechanical properties of living tissues.  -  Springer, New York (1993).

  • (2) - HUMPHREY (J.D.) -   Cardiovascular solid mechanics: cells, tissues and organs.  -  Springer, New York (2002).

  • (3) - SACKS (M.S.), CHUONG (C.J.) -   Biaxial mechanical properties of passive right ventricular free wall myocardium.  -  J. Biomech. Eng., 115, p. 202-205 (1993).

  • (4) - HOLZAPFEL (G.A.), GASSER (T.C.), OGDEN (R.W.) -   A new constitutive framework for arterial wall mechanics and a comparative study of material models.  -  J. Elast., 61, p. 1-48 (2000).

  • (5) - RACHEV (A.), STERGIOPOULOS (N.), MEISTER (J.J.) -   A model for geometric and mechanical adaptation of arteries to sustained hypertension.  -  J. Biomech. Eng., 120, p. 9-17 (1998).

  • (6) - BAEK (S.), RAJAGOPAL (K.R.), HUMPHREY (J.D.) -   A...

1 Sites Internet

• Cours en science et vie de la terre http://www.pst.chez-alice.fr

• Groupe de cardiologie interventionnelle http://www.gci-cardio.fr

• Projet Thrombus VPH http://www.thrombus-vph.eu

• CV Path http://www.cvpath.org

• Vascops http://www.vascops.com

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies pour la santé

(131 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS