Présentation
En anglaisRÉSUMÉ
La locomotion des robots humanoïdes est essentielle pour le développement de nouveaux systèmes de transport. Elle doit satisfaire des contraintes de moindre consommation d’énergie afin d’accroître l’autonomie énergétique, et de respect des conditions de contact unilatéral. Il faut aussi assurer la stabilité orbitale de la marche malgré les perturbations telles que les incertitudes de modèle, les irrégularités du sol, ou les interactions avec l’environnement. Pour rejeter ces perturbations, nous considérons des stratégies de commande qui sont associées à la définition des mouvements de référence. Quelques stratégies de commande de base et des éléments d’analyse de la stabilité orbitale d’une marche cyclique de robots bipèdes planaires et 3D sont présentés dans cet article.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The locomotion of humanoid robots is essential for the development of new transport systems. It has to satisfy constraints of lower energy consumption to increase energy autonomy and meet the conditions of unilateral contact. It also has to ensure the orbital stability of walking despite disturbances such as model uncertainty, unstructured ground, or interactions with the environment. To eliminate these disturbances, we consider control strategies associated with the definition of reference movements. This article presents some basic control strategies and analysis tools for the orbital stability of a cyclic planar and 3D bipedal robot walk.
Auteur(s)
-
Gabriel ABBA : Professeur des universités à l’Université de Lorraine - Laboratoire de conception fabrication commande - (LCFC, EA 4495)
-
Yannick AOUSTIN : Professeur des universités à l’Université de Nantes - Institut de recherche en communication et cybernétique de Nantes - (IRCCyN, UMR CNRS 6597)
INTRODUCTION
La locomotion des robots humanoïdes est essentielle pour le développement de nouveaux systèmes de transport. Elle doit satisfaire des contraintes de moindre consommation d’énergie afin d’accroître l’autonomie énergétique, et de respect des conditions de contact unilatéral. Il faut aussi assurer la stabilité orbitale de la marche malgré les perturbations telles que les incertitudes de modèle, les irrégularités du sol, ou les interactions avec l’environnement. Pour rejeter ces perturbations, nous considérons des stratégies de commande qui sont associées à la définition des mouvements de référence. Quelques stratégies de commande de base et des éléments d’analyse de la stabilité orbitale d’une marche cyclique de robots bipèdes planaires et 3D sont présentés dans cet article.
KEYWORDS
Mobil robotics | Monitoring | Locomotion | virtual constraints | Walking gait
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Robotique
(59 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. État de l’art et spécificités de la commande des robots humanoïdes
Un résumé de quelques commandes dédiées aux robots humanoïdes, les notions de robots humanoïdes complètement actionnés, suractionnés et sous-actionnés suivant les phases de locomotion, ainsi que les capteurs de mesure généralement utilisés sont exposés dans cette section.
2.1 Historique des commandes
Les premières commandes de robots humanoïdes se sont fixées comme contrainte, entre autres, que la projection de leur centre de masse (CdM) soit toujours à l’intérieur du polygone de sustentation. Ces robots humanoïdes étaient donc statiquement stables. La conséquence directe était une vitesse de mouvement de marche très lente par rapport à celle de l’humain . Vukobratovic et ses collègues ont été les premiers à conceptualiser le zero moment point (ZMP) . Lorsque ce point est à l’intérieur du polygone de sustentation, il est confondu avec le centre de pression (CdP). Lorsqu’il est à l’extérieur du polygone de sustentation, cela veut dire que les conditions de contact entre la semelle d’appui et le sol ne sont pas vérifiées, et par conséquent que la liaison semelle-sol évolue vers un autre état. Par exemple, on passe d’un contact surfacique à un contact linéique. Certaines commandes de robots humanoïdes sont déterminées afin de garantir que le ZMP reste à l’intérieur du polygone de sustentation ...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Robotique
(59 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
État de l’art et spécificités de la commande des robots humanoïdes
BIBLIOGRAPHIE
-
(1) - AOUSTIN (Y.), FORMAL’SKII (A.) - Control design for a biped : reference trajectory based on driven angles as functions of the undriven angle. - Int. J. of Computer and Systems Sciences 42, 4, 159-176 (2003).
-
(2) - AOUSTIN (Y.), FORMAL’SKII (A.M.) - Design of reference trajectory to stabilize desired nominal cyclic gait of a biped. - In Proc. of the International Workshop on Robot Motion and Control, ROMOCO’99, pp. 159-164 (1999).
-
(3) - AOUSTIN (Y.), FORMAL’SKY (A.M.) - On optimal swinging of the biped arms. - In Proc. IEEE Int. Conf. on Intelligent Robots and Systems IROS (Nice, France, 2008), pp. 2922-2927.
-
(4) - ARTEMIADIS (P.), KREBS (H.I.) - On the interlimb coordination and synchronization during gait. - In Proceedings of the IEEE Engineering in Medicine and Biology Society (2011), pp. 1571-1574, DOI : 10.1109/IEMBS.2011.6090457.
-
(5) - BELETSKY (V.) - Dynamics of bipedal walking. - Izv. AN SSSR, MTT 3 : 3-14 (in Russian) (1975).
- ...
Cet article fait partie de l’offre
Robotique
(59 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Robotique
(59 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive