Présentation

Article

1 - PRINCIPE DU MICROSCOPE EN CHAMP PROCHE

2 - LE MICROSCOPE À EFFET TUNNEL

3 - LE MICROSCOPE À FORCE ATOMIQUE ET LES MICROSCOPIES DE FORCE

4 - MICROSCOPIE OPTIQUE EN CHAMP PROCHE ET EFFET TUNNEL DE PHOTONS

5 - INSTRUMENTATION

6 - CONCLUSION

| Réf : P895 v2

Le microscope à force atomique et les microscopies de force
Microscopie à sonde locale

Auteur(s) : Frank SALVAN, Franck THIBAUDAU

Date de publication : 10 sept. 1999

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Frank SALVAN

  • Franck THIBAUDAU : Groupe de Physique des États Condensés (GPEC) Faculté des sciences de Luminy Université de la Méditerranée

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Lapparition en 1982 du microscope à effet tunnel a constitué une révolution dans le domaine des microscopies en introduisant le concept de micro-scopie de champ proche qui est à la base des microscopes à sonde locale. Différentes dans leur principe des microscopies traditionnelles, les microscopies à sonde locale (ou de champ proche) se développent en effet à partir des avancées scientifiques et techniques de la microscopie par effet tunnel. Utilisant toutes le balayage d’une pointe sonde à proximité d’un échantillon, elles fournissent des images qui sont des cartographies à très haute résolution de propriétés spécifiques de la surface de l’échantillon selon le type de sonde utilisé. Diverses propriétés (structurales, électroniques, chimiques, optiques...) et leurs variations locales à l’échelle nanométrique ou subnanométrique peuvent être ainsi imagées et étudiées. Grâce à leur grand pouvoir de résolution, les microscopies à sonde locale prennent le relais des microscopies classiques pour étudier la matière jusqu’à l’échelle atomique.

À l’heure actuelle, après quelques années de développement, de nombreux laboratoires de recherche et de l’industrie utilisent ces instruments d’observation et d’analyse. Ils permettent d’étudier les propriétés locales de surfaces (ou d’interfaces) dans des conditions très variées selon les applications : ultravide pour la physico-chimie des surfaces, milieu liquide pour la biologie et l’électrochimie, atmosphère contrôlée pour toutes sortes de matériaux et pour la métrologie en ligne de certaines applications du domaine recherche et déve-loppement. Le tableau A montre comment par la mesure locale et le contrôle de grandeurs ou quantités physiques (un courant, une force, une capacité, une intensité de rayonnement...), on peut accéder à des propriétés locales caractéristiques d’un échantillon.

Certains microscopes (cf. tableau A) permettent aussi de modifier de façon contrôlée la surface de l’échantillon en particulier en manipulant les atomes de surface ou en créant une réaction chimique locale sous la pointe. Ceci permet la fabrication de structures de taille nanométrique, ou la gravure de motifs. On a donc à la fois des instruments de caractérisation des surfaces de matériaux et des outils de gravure à l’échelle nanométrique.

Il existe une abondante littérature et de nombreux ouvrages de revue sur les microscopies à sonde locale. Dans cet article, nous dégagerons seulement les principales caractéristiques des nouveaux instruments et illustrerons les nombreux champs d’application dans différents domaines de la physique, de la biologie, de la métrologie et des nanotechnologies. Après la description du principe général d’un microscope à sonde locale et de son fonctionnement, nous nous attacherons à étudier de façon plus détaillée les premiers microscopes (STM et AFM ou leurs dérivés). Pour chaque instrument nous montrerons les impacts en recherche fondamentale (physique, chimie et biologie), métrologie et technologie. Nous traiterons ainsi de la microscopie par effet tunnel et de ses applications. Un paragraphe sera consacré au microscope à force atomique et à la microscopie de force et un autre abordera la microscopie de champ proche optique et ses applications. Les problèmes généraux de l’instrumentation seront traités à la fin de l’article.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-p895


Cet article fait partie de l’offre

Frottement, usure et lubrification

(92 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

3. Le microscope à force atomique et les microscopies de force

3.1 Principes

Développé par G. Binnig et al. en 1986 [17], le microscope à force atomique (AFM :Atomic Force Microscope) est né des considérations suivantes : les interactions entre pointe et surface dans les conditions d’imagerie STM sont importantes et donnent lieu, selon les distances pointe-surface, à des forces répulsives ou attractives agissant sur la pointe. Par mesure et contrôle de ces forces, un microscope adapté devrait permettre d’imager la topographie de la surface et d’étudier d’autres phénomènes physiques à l’échelle nanométrique. Le microscope AFM, réalisé à partir de cet objectif (figure 13), emprunte la technologie du STM : déplacements à l’échelle subnanométrique, régulation du déplacement relatif pointe-surface à force constante (en place du courant pour le STM). Le capteur de force est constitué d’une fine pointe placée à l’extrémité d’un levier flexible de raideur k, dont la déflexion δz donne une mesure de la force F (F = k δz) en tout point de la surface balayée.

Le microscope à effet tunnel est basé sur le passage d’un courant entre la pointe et l’échantillon, aussi celui-ci doit-il être conducteur. Cet impératif d’ordre physique limite le champ d’observation aux métaux et aux semi-conducteurs. Cette restriction est levée en microscopie de force qui peut être pratiquée sur toutes sortes de matériaux, indépendamment de leurs propriétés électriques. De plus, les facilités de caractérisation à l’air ou en environnement contrôlé ont largement contribué au développement de cette technique de caractérisation de surfaces de matériaux.

Nature des forces : l’interaction entre pointe et surface, de nature essentiellement électromagnétique, donne lieu à une grande variété de forces (répulsives, attractives, électrostatiques ou magnétiques, capillarité). Au contact immédiat de la surface, les forces répulsives à courte portée dominent par effet de répulsion coulombienne des nuages électroniques des atomes de la pointe et de la surface. À des distances de l’ordre du nanomètre ou plus, ce sont les forces à longue portée qui dominent (forces attractives de van der Waals ou capillaires en présence de vapeur d’eau). Enfin,...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Frottement, usure et lubrification

(92 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Le microscope à force atomique et les microscopies de force
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   *  -  IBM Journal of Research and Develop. Vol. 30 no 4 et 5 (1996).

  • (2) -   *  -  Scanning Tunneling Microscopy, Vol. I, II et III, éd. par (R.) WIESENDANGER et (H.J.) GÜNTHERODT, Springer Series in Surface Sciences (20, 28 et 30) Springer (1992, 1993, 1995).

  • (3) - WIESENDANGER (R.) -   Scanning probe microscopy and spectroscopy.  -  Cambridge University Press (1994).

  • (4) - MAGONOV (S.N.), MYUNG-HWAN WHANGBOO -   Surface analysis with STM and AFM.  -  VCH Publishers 1996.

  • (5) - CHUNLI BAI -   *  -  Scanning tunneling microscopy and its application. Springer Series in Surface Sciences 32, Springer 1992.

  • (6) - JOHN DI NARDO (N.) -   Nanoscale characterization of surfaces and interfaces.  -  VCH 1994.

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Frottement, usure et lubrification

(92 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS