Présentation
EnglishRÉSUMÉ
La théorie de la lubrification élastohydrodynamique est utilisée pour calculer l'épaisseur du film lubrifiant dans les contacts hertziens (c'est-à-dire dans les roulements, les engrenages et les systèmes à cames). La connaissance de cette épaisseur est une donnée nécessaire pour calculer la durée de vie du contact. L'élaboration de la théorie EHD est présentée dans cet article de façon progressive et chronologique, avec d'abord la théorie de Martin, puis la théorie de Ertel-Grubin, et ensuite les solutions modernes élaborées par l'école anglo-américaine avec Hamrock et Dowson et par l'école hollandaise avec Moes et Venner. Les dernières avancées de la tribologie permettent de prendre en compte non seulement les effets thermiques à l'entrée du contact mais aussi la sous-alimentation du contact en lubrifiant.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Pascal GUAY : Ingénieur de l’Institut National des Sciences Appliquées de Lyon - Docteur ès Sciences - Expert en tribologie chez Airbus Defence and Space
INTRODUCTION
L’élaboration de la théorie de la lubrification élastohydrodynamique, avec la compréhension des phénomènes complexes qu’elle met en jeu, est une des avancées majeures dans le domaine de la tribologie au cours du xx e siècle. La révélation de l’existence d’un film lubrifiant insoupçonné jusque-là a bouleversé cette science, en expliquant la remarquable efficacité de la lubrification dans les contacts hertziens. La lubrification élastohydrodynamique (EHD) se produit dans les contacts soumis à un effet de poinçonnement (surfaces non conformes), avec des pressions locales très élevées, essentiellement dans les roulements, les engrenages et les dispositifs à came.
Dans ces contacts soumis à une forte charge, la déformation élastique locale des surfaces en regard modifie la géométrie des pièces au voisinage du contact. L’équilibre hydrodynamique est alors régi non seulement par l’équation de Reynolds, mais également par la piézoviscosité de l’huile et par la théorie de Hertz, ce qui permet d’engendrer des films d’épaisseur suffisante pour séparer les pièces et limiter leur frottement et leur usure. Il s‘agit donc d’un domaine très important pour ses applications pratiques : la théorie EHD permet maintenant de concevoir rationnellement les roulements, les engrenages et les dispositifs à came, en optimisant la géométrie du contact et les conditions de fonctionnement pour maximiser l’épaisseur du film d’huile.
Il se produit cependant deux phénomènes qui contribuent à réduire l’épaisseur du film lubrifiant et qui sont localisés à l’entrée du contact : les effets thermiques et les conditions d’alimentation. Les modèles actuels proposent des facteurs correctifs qui traduisent la diminution de l’épaisseur du film lubrifiant causés par ces deux phénomènes.
Cet article présente le développement de cette théorie et ses avancées récentes au début des années 2000.
L’avancée la plus remarquable dans le domaine de la lubrification élastohydrodynamique fut sans conteste la théorie élaborée dans l’ombre en 1939 par le Russe Ertel et publiée 10 ans plus tard par Grubin. En effet, cette théorie donne une épaisseur de film confortée par les résultats d’essais, et qui est 10 à 100 fois plus importante que celle obtenue avec la théorie hydrodynamique publiée par Martin en 1916 en considérant des corps rigides et un lubrifiant isovisqueux. Dans les années qui suivirent, de nombreux modèles semi-empiriques ont été élaborés et améliorés pour calculer l’épaisseur du film lubrifiant. Les paramètres du contact sont groupés pour former des paramètres adimensionnés, utilisés par la suite pour trouver une expression analytique des épaisseurs de film minimale et centrale. La distinction claire des différents régimes de lubrification est due aux travaux de Johnson et de Hamrock et Dowson : rigide isovisqueux, rigide piézovisqueux, élastique isovisqueux et élastique piézovisqueux.
L’école hollandaise avec Moes et Venner a défini d’autres paramètres adimensionnés qui ont permis de développer les résolutions analytiques pour aboutir à une synthèse des différentes théories élaborées au cours du xx e siècle, ce qui permet aujourd’hui en 2014 de traiter des cas plus complexes. Ainsi, de nombreuses recherches actuelles en élastohydrodynamique portent sur la caractérisation et la modélisation des fluides lubrifiants non newtoniens.
VERSIONS
- Version courante de mars 2024 par Pascal GUAY
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Frottement, usure et lubrification
(92 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Le régime élastohydrodynamique (EHD)
1.1 Le contact hertzien lubrifié
On appelle contacts hertziens les contacts soumis à de fortes pressions de Hertz supérieures à 200 MPa.
La lubrification EHD se produit dans les contacts entre surfaces non conformes, lesquels sont soumis à un effet de poinçonnement : principalement entre les dents des engrenages, dans les roulements au contact piste /élément roulant, et dans les contacts came /poussoir.
On la rencontre aussi en biomécanique, dans les articulations des membres inférieurs. La pression de contact est très faible (de l’ordre du mégapascal) mais les cartilages poreux et riches en eau ont un module de Young très bas de l’ordre de 10 à 100 MPa ( chapitre 22.5). La théorie EHD doit être utilisée pour prendre en compte la déformation élastique des cartilages.
HAUT DE PAGE1.2 Le régime élastohydrodynamique (EHD)
Le coefficient de frottement du contact lubrifié varie avec la vitesse et suit plusieurs régimes de fonctionnement successifs qui sont décrits par la courbe de Stribeck. L’article [TRI 1500] présente cette courbe ainsi que les différents régimes de lubrification.
On définit l’épaisseur réduite (ou paramètre de Tallian) :
Cet article fait partie de l’offre
Frottement, usure et lubrification
(92 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Le régime élastohydrodynamique (EHD)
BIBLIOGRAPHIE
-
(1) - BOUSSINESCQ (J.) - Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques. - Paris, Gauthier-Villars, (1885).
-
(2) - HERTZ (H.) - Le mémoire de Hertz sur les contactsponctuels. ENSAM Paris 1985, Publicationscientifique et technique n° 30, Version originale « Uber die Berührung fester elastischer Körper und über die Härte, Verhandlungen des Vereins zur Beförderung des Gewerbefleisses », - p. 449-463, (1882).
-
(3) - REYNOLDS( O.) - On the theory of lubrication and its application to Mr Beauchamp Tower’s Experiments, including an experimental determination of the viscosity of olive oil, - Philosophical Transactions of the Royal Society of London, A117, p. 157-235, (1886).
-
(4) - BARUS (C.) - Isothermals, isopiestics and isometrics relative to viscosity, - American Journal of Sciences, vol. 45, p. 87 (1893).
-
(5) - MARTIN (H.M.) - Lubrication of gear teeth, - Engineering London 102, 199 p. (1916).
- ...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
FRANCE
-
LamCos, Laboratoire de Mécanique des Contacts et des Structures, INSA de Lyon http://lamcos.insa-lyon.fr/
-
LTDS, Laboratoire de Tribologie et Dynamique des Systèmes, École Centrale de Lyon http://www.ec-lyon.fr/recherche/laboratoires/ltds
-
LISMMA, Laboratoire d’Ingéniérie des Systèmes Mécaniques et des Matériaux, Groupe tribologie, SupMéca, à Saint Ouen http://lismma.supmeca.fr/
-
Institut P’, LMS Laboratoire de Mécanique des Solides, Groupe Mécanique des Interfaces lubrifiées de l’Université de Poitiers http://www.pprime.fr/
-
Laboratoire de Mécanique et Rhéologie, Polytech Tours http://www.lmr.univ-tours.fr
-
CRITT MDTS – Matériaux, Dépôts et Traitements de Surface. Centre régional d’innovation et de transfert de technologie de Champagne Ardennes http://www.critt-mdts.com/
-
Équipe Tribologie de l’ICSI Institut de Chimie des Surfaces et Interfaces de Mulhouse
-
Groupe de Technologie des Surfaces et Interfaces de l’Université des Antilles et de la Guyane
-
Équipe Contact, frottement, interface du LMA Laboratoire de Mécanique et d’Acoustique, Marseille
-
Groupe Tribologie et Adhésion du LPMMH Laboratoire de Physique et Mécanique des Milieux Hétérogènes UMR CNRS n° 7636 de l’ESPCI, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris
-
Laboratoire de Rhéologie, UMR CNRS n° 5520, de l’INPG Institut National Polytechnique de Grenoble
-
SPCTS Science des Procédés...
Cet article fait partie de l’offre
Frottement, usure et lubrification
(92 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive