Présentation

Article

1 - DÉCOUPAGE DES TÔLES

2 - SIMULATION

3 - PRÉDICTION DE L’USURE DES OUTILS PAR ÉLÉMENTS FINIS

4 - SIMULATION POUR UNE TÔLE CIRCULAIRE

5 - RÉSULTATS

6 - LOGICIEL BLANKSOFT D’OPTIMISATION

7 - VALIDATION EXPÉRIMENTALE

8 - CONCLUSION

| Réf : BM7505 v1

Simulation pour une tôle circulaire
Modélisation et simulation du découpage des tôles

Auteur(s) : Ridha HAMBLI, Alain POTIRON

Date de publication : 10 janv. 2004

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Ridha HAMBLI : Maître de Conférences - Institut des Sciences et Technique de l’Ingénieur d’Angers - Lasquo

  • Alain POTIRON : Professeur Émérite de l’Université d’Angers - Laboratoire Procédés Matériaux Instrumentation - Centre d’enseignement et de recherche d’Angers de l’École Nationale Supérieure d’Arts et Métiers

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Le travail des tôles est, après l’usinage, le procédé de fabrication le plus utilisé dans les industries mécaniques. Parmi tous les processus industriels de mise en forme par déformation plastique, le découpage des tôles est une opération particulière car contrairement à l’emboutissage et au pliage par exemple qui ont pour but de modifier plastiquement la forme de la tôle, le découpage sollicite celle-ci jusqu’à la rupture finale. Durant l’opération, le matériau subit des sollicitations complexes dont la modélisation est souvent non linéaire et avant rupture finale, le matériau est soumis à des phénomènes d’endommagement et de propagation de fissures. On conçoit ainsi toute la difficulté qu’il y a à prédire correctement l’évolution dans le temps des phénomènes de découpage, d’autant plus que divers paramètres mécaniques et métallurgiques contribuent à la modification du comportement de la tôle tels que :

  • l’écrouissage et l’endommagement qui caractérisent la résistance du matériau et sa dégradation sous charge jusqu’à la rupture finale ;

  • la morphologie métallurgique (formes et tailles des grains), la texture cristallographique et les structures du matériau qui évoluent au cours de l’opération.

Tous ces facteurs influent sur la qualité de la pièce fabriquée. Par exemple, l’état d’écrouissage et d’endommagement du bord découpé aura ultérieurement une grande influence sur la tenue en fatigue des pièces en service.

Pour la description mathématique de la déformation plastique des métaux, le lecteur pourra consulter l’article [M 590]. L’article [M 610] décrit par ailleurs les phénomènes d’endommagement et de rupture en mise en forme.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bm7505


Cet article fait partie de l’offre

Travail des matériaux - Assemblage

(175 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Simulation pour une tôle circulaire

L’exemple qui suit consiste en une opération de découpage d’une tôle d’acier CC60 (0,6 % de carbone). Les données géométriques sont celles de la figure 19.

Les caractéristiques du métal sont résumées sur le tableau suivant.

Dans le cas particulier d’une modélisation du découpage des tôles par la méthode des éléments finis, le choix du maillage est d’une très grande importance. Il doit être adapté pour rendre compte des phénomènes de naissance et de propagation des fissures, ce qui impose d’avoir une taille des éléments de l’ordre de la taille des grains du matériau considéré (10 à 60 µm) dans la zone du jeu poinçon/matrice car c’est dans cette zone que la rupture se fera.

La figure 20 montre le maillage axisymétrique utilisé pour la tôle avec 320 éléments dans le jeu.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Travail des matériaux - Assemblage

(175 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Simulation pour une tôle circulaire
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ABAQUS (H.K.S.) -   Theory manual  -  . Version 6.2.

  • (2) - ARCHARD (J.F.) -   Contact and rubbing of flat surfaces  -  . J. Appl. Phys. 24, p. 981‐988 (1953).

  • (3) - ATKINS (A.G.) -   Surfaces produced by guillotining  -  . Phil. Mag. 4, p. 627‐641 (1981).

  • (4) - ATKINS (A.G.) -   Possible explanation for unexpected departures in hydrostatic tension‐ fracture strain relations  -  . Metal Science, p. 81‐83, févr. 1981.

  • (5) - CHOY (C.M.), BALENDRA (R.) -   Experimental analysis of parameters influencing sheared‐edge profiles  -  . p. 101‐110, The 5th Inter. Conference on Sheet Metal, University of Twente, Netherland, 1‐3 avr. 1996.

  • (6) - CARTER (W.T.) -   A model for friction in metal forming  -  . J. Eng. Mat. Tech. 113, p. 8‐13 (1994).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Travail des matériaux - Assemblage

(175 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS