Présentation

Article

1 - ÉMERGENCE DU STANDARD PC

2 - ORGANISATION, STRUCTURE ET TECHNOLOGIE DE L’ORDINATEUR

3 - TECHNOLOGIE ET PERFORMANCES

  • 3.1 - Performances des processeurs
  • 3.2 - Performances crêtes et performances réelles
  • 3.3 - Influence des lois exponentielles

4 - EXPLOITATION DU PARALLÉLISME D’INSTRUCTIONS

5 - TECHNIQUES POUR ALLER AU-DELÀ DES SUPERSCALAIRES

6 - PROBLÈMES LIÉS À L’AUGMENTATION DES FRÉQUENCES D’HORLOGE

7 - ORDINATEURS ET INTERNET

  • 7.1 - Rôle respectif de l’ordinateur et du réseau
  • 7.2 - Composants grand public
  • 7.3 - Serveurs de données et de connaissances

8 - SUPERORDINATEURS POUR LE CALCUL SCIENTIFIQUE

9 - QUELS ORDINATEURS EN 2010 ?

| Réf : H1058 v1

Superordinateurs pour le calcul scientifique
Évolution de l’architecture des ordinateurs

Auteur(s) : Daniel ETIEMBLE

Date de publication : 10 févr. 2001

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Cet article présente l’évolution de l’architecture des ordinateurs, précisant ainsi la place et le rôle des articles de la rubrique «Matériel» de ce traité. Il décrit l’articulation entre la technologie des semi-conducteurs, les concepts architecturaux et les besoins des grandes classes d’applications utilisant ces ordinateurs, qu’ils soient visibles (PC et serveurs) ou non (systèmes embarqués et systèmes mobiles). L’augmentation des fréquences d’horloge liée aux générations successives de technologies CMOS a été déterminante pour les performances jusqu'au début des années 2000, mais le «mur de la chaleur», qui interdit des fréquences supérieures à 4 GHz, a provoqué un tournant vers les architectures parallèles (multi-cœurs, GPU, accélérateurs matériels) pour pouvoir continuer à augmenter les performances.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Evolution of computer architecture

This article gives an overview of the evolution of computer architecture, specifying the place and role of each individual "hardware" item. It goes on to show the relationships between semiconductor technology, architectural concepts and the needs of large classes of applications that use these computers, either visible (PCs or servers) or embedded (onboard and mobile systems). Increased clock frequency enabled by successive generations of CMOS technology was the key factor in performance gains until the early 2000s. Now the "heat wall", prohibiting frequencies above 4 GHz, has caused a shift towards parallel architectures (multi-cores, GPU, hardware accelerators) to continue enhancing performance

Auteur(s)

  • Daniel ETIEMBLE : Ingénieur de l’INSA de Lyon - Professeur à l’Université Paris-Sud

INTRODUCTION

Cet article a deux objectifs principaux. Le premier est de donner une perspective d’ensemble de l’évolution de l’architecture des ordinateurs. Cette présentation générale permet de préciser la place et le rôle de chacun des articles particuliers de la rubrique Matériel de ce traité. Le second objectif est de montrer l’influence respective de la technologie matérielle utilisée pour la réalisation des différents composants d’une part et des progrès architecturaux, d’autre part, sur les performances des ordinateurs. Nous montrons notamment les conséquences de l’évolution exponentielle des performances des circuits intégrés CMOS et l’évolution prévisible de ces performances et des architectures dans le futur.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

CPU   |   multi-core   |   GPU   |   CMOS technology   |   heat wall   |   memory wall

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-h1058


Cet article fait partie de l’offre

Technologies logicielles Architectures des systèmes

(238 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

8. Superordinateurs pour le calcul scientifique

Les besoins en puissance de calcul des applications scientifiques ont contribué depuis très longtemps à créer une classe particulière de machines, appelées superordinateurs, caractérisés à la fois par une performance très supérieure à celle des gros ordinateurs et par un coût d’un ordre de grandeur plus élevé. Jusqu’au début des années 1990, les superordinateurs étaient typiquement des machines vectorielles. Maintenant, en fonction de la taille des problèmes, machines vectorielles et machines parallèles extensibles se partagent le marché.

8.1 Machines vectorielles

La performance des machines vectorielles repose essentiellement sur le fait que la structure régulière d’un vecteur (tableau de données à une dimension) permet un accès régulier aux données mémoire. Celles-ci peuvent être chargées dans des tableaux de registres physiques (appelé registres vectoriels) et les opérations sur ces tableaux peuvent être exécutées dans des opérateurs pipelinés. Compte tenu de la régularité des accès aux structures de données, des superpipelines à grand nombre d’étages peuvent être utilisés, avec des temps de cycle très courts. En 2000, les temps de cycle sont similaires à ceux des microprocesseurs standard, car des technologies CMOS similaires sont utilisées. Les machines vectorielles conservent l’intérêt de pouvoir exécuter de manière performante les vieux codes vectorisés dans le passé.

HAUT DE PAGE

8.2 Machines parallèles

Au-delà de l’utilisation du parallélisme d’instructions que l’on trouve dans les processeurs superscalaires, l’augmentation des performances à technologie donnée ne peut résulter que de l’augmentation du nombre de processeurs et donc de la solution parallèle.

Les machines parallèles utilisées en calcul scientifique sont MIMD, avec des programmes indépendants (Multiple Instruction) travaillant sur des données indépendantes (Multiple Data). Il y a deux grandes classes de machines MIMD. Le schéma de principe des machines MIMD à mémoire commune (ou partagée) est présenté sur la figure 15. Chaque processeur a un...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies logicielles Architectures des systèmes

(238 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Superordinateurs pour le calcul scientifique
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - HENNESSY (J.-L.), PATTERSON (D.) -   Architecture des ordinateurs, une approche quantitative.  -  International Thomson Publishing, édition française par D. Etiemble 1996.

  • (2) - CHEVANCE (R.-J.) -   Serveurs multiprocesseurs, clusters et architectures parallèles.  -  Eyrolles 2000.

  • (3) - ETIEMBLE (D.) -   Structure interne des ordinateurs.  -  H 705, 06-1993.

  • (4) - ETIEMBLE (D.) -   Architecture des ordinateurs. Mémoires et entrées-sorties.  -  H 707, 09-1995.

  • (5) - ETIEMBLE (D.) -   Composants logiques et opérateurs matériels. Fondements.  -  H 685, 09-1994.

  • (6) - ETIEMBLE (D.) -   Mémoires à semi-conducteurs. Composants et organisation.  -  H 1 218, 08-1998.

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies logicielles Architectures des systèmes

(238 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS