Présentation
Auteur(s)
-
Daniel VAN LABEKE : Laboratoire d’optique P.M. Duffieux, université de Franche-Comté - CNRS URA 214, UFR Sciences et techniques
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
En 1981, Binnig et Rohrer inventent le microscope électronique à effet tunnel (STM : Scanning Tunneling electronic Microscope ) ; leur découverte va provoquer un renouveau de la recherche en microscopie et donner naissance à de nombreux microscopes fondés sur un principe complètement nouveau. En fait, on peut considérer que leur invention marque la naissance d’une nouvelle microscopie : la microscopie à sonde locale ou en champ proche.
Dans un microscope traditionnel, la partie la plus importante est une lentille, l’objectif. L’objet est éclairé par réflexion ou par transmission et l’objectif capte le champ diffracté par l’objet pour en faire une image. La lumière étant une onde, la diffraction par l’objectif limite le pouvoir de résolution du microscope : le critère de Rayleigh interdit de séparer deux points de l’objet plus rapprochés que la demi-longueur d’onde. En lumière visible, le pouvoir séparateur est théoriquement de l’ordre de 0,25 µm et, pratiquement, est rarement inférieur à un micromètre.
Un microscope à sonde locale ne possède pas de lentille ; la pièce la plus importante de ces microscopes est une sonde, très fine, qui est déplacée au voisinage de l’objet, en champ proche, pour l’éclairer ou en capter un signal. Ces microscopes sont des microscopes à balayage ; l’image est obtenue en déplaçant point par point la sonde et en traçant le signal détecté en fonction de sa position. Ils nécessitent l’utilisation d’un ordinateur pour visualiser les images, mais aussi pour contrôler la position de la sonde qui doit se déplacer à des distances nanométriques de la surface de l’objet.
Ces microscopes ont un pouvoir de résolution qui n’est pas limité par la diffraction et fournissent des images avec une résolution inespérée il y a encore peu de temps. Des images avec une résolution de 20 nm sont produites par de nombreux laboratoires et une équipe a obtenu une résolution de 1 nm.
Dans cet article, nous présentons rapidement l’historique des microscopes optiques en champ proche. Puis nous décrivons et comparons les différentes configurations les plus utilisées actuellement, en expliquant le principe de fonctionnement et en montrant comment l’utilisation des ondes évanescentes permet d’aller au-delà du critère de Rayleigh. Nous présentons ensuite les différents problèmes techniques et les solutions qui leur sont apportées, ainsi que les résultats actuels et quelques exemples d’applications. Les perspectives et l’évolution probable de cette technique très récente mais promise à un grand développement sont évoquées en conclusion.
Pour de plus amples renseignements, le lecteur se reportera aux références [1] et [2].
VERSIONS
- Version courante de sept. 2014 par Jérôme SALVI, Daniel VAN LABEKE
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Instrumentation
Si le principe des microscopes optiques en champ proche est simple, de nombreux problèmes techniques sont à résoudre pour passer du principe à la réalisation. Nous allons rapidement les passer en revue et donner les solutions qui ont été proposées pour les résoudre. Commençons par les problèmes techniques communs à toutes les microscopies en champ proche.
3.1 Dispositif de balayage
Comme tous les microscopes à sonde locale, les microscopes optiques en champ proche utilisent des céramiques piézoélec-triques pour positionner et déplacer la pointe dans les trois dimensions de l’espace. Ces dispositifs sont commercialisés avec leur électronique de commande. Vu les résolutions obtenues actuellement en optique, une résolution de 1 nm en (x, y) semble suffisante. Une résolution de 0,1 nm est nécessaire en z . La qualité du dispositif de balayage dépend de celle des céramiques (linéarité et faible hystérésis), mais l’électronique joue un rôle fondamental sur les résultats obtenus. Elle permet une compensation de l’hystérésis et des non-linéarités et doit avoir un excellent rapport signal/bruit. Le dispositif avec 3 céramiques en trièdre orthonormé est peu utilisé en optique. Des configurations en tube ou en cylindre sont plus utilisées. La surface cylindrique est métallisée par quadrant permettant une translation en x, y et z avec un seul cylindre.
Pour l’approche grossière de la pointe vers l’échantillon, des dispositifs annexes sont nécessaires (vis micrométriques, moteur pas à pas ou céramiques piézoélectriques de grandes amplitudes). Cette approche doit être contrôlée optiquement par une lunette ou un microscope de visée.
Les propriétés des céramiques dépendent de la température ; un bon contrôle de la température des expériences peut s’avérer nécessaire pour éviter des dérives.
HAUT DE PAGE3.2 Filtrage des vibrations parasites
Les vibrations parasites constituent également un problème commun à toutes les microscopies à sondes locales et leur élimination est déterminante sur la qualité des images et leur résolution.
Le microscope doit être...
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Instrumentation
BIBLIOGRAPHIE
-
(1) - SALVAN (F.) - Microscopie par effet tunnel - . Techniques de l’Ingénieur, P 895, vol. P1 (1989).
-
(2) - ARNOLD (M.) - Microscopie optique - . Tech-niques de l’Ingénieur, P 860, vol. P1 (1993).
-
(3) - SYNGE (E.H.) - A suggested method for extending microscopic resolution into the ultra-microscopic region - . Phil. Mag. 6, p. 356-362 (1928).
-
(4) - POHL (D.W.) - Optical near-field scanning microscope - . European Patent Application No 0112401, filed December 27, 1982 ; U.S. Patent 4, 604, 520, filed December 20 (1983).
-
(5) - LEWIS (A.), ISAACSON (M.), MURRAY (A.) et HAROOTUNIAN (A.) - Scanning optical spectral microscopy with 500 A resolution - . Biophys. J. 41, p. 405a (1983).
-
(6) - POHL (D.W.), DENK (W.) et DÜRIG (U.) - Optical stethoscopy : imaging with λ/20 in Micron and submicron...
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive