Présentation
Auteur(s)
-
André LANNOY : Électricité de France (EDF) - Division Recherche et Développement
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Bien que rares, les événements tels que ruptures de tuyauteries, de réservoirs, d’enceintes peuvent conduire à des conséquences extrêmement graves. Jusqu’à un passé récent, on se protégeait de ces événements en prenant des marges, des facteurs de sécurité, que l’on cumulait sur l’ensemble des paramètres influents, à l’aide d’une méthodologie uniquement déterministe. Cette démarche ne permet pas néanmoins de bien connaître les risques pris. Dans l’analyse de la fiabilité des structures, les paramètres influents sont considérés comme des variables aléatoires et, à partir d’une équation physique de défaillance dont les variables sont probabilisées, on calcule la probabilité de défaillance. Les applications industrielles sont nombreuses : optimisation de la maintenance et des inspections, calcul de durée de vie résiduelle, etc.
Le retour d’expérience et la connaissance des cinétiques de dégradation sont deux des conditions essentielles d’application de l’analyse de fiabilité des structures.
Le dimensionnement des structures est fondé sur une démarche réglementaire et codifiée, essentiellement déterministe. Des coefficients de sécurité sont introduits dans les calculs afin de respecter des marges importantes pour garantir leur intégrité.
Ce dimensionnement ne permet pas d’évaluer le risque lié à la défaillance d’une structure, sa fiabilité. Il donne généralement une marge volontairement pessimiste vis-à-vis des différents modes de ruine possibles et conduit le plus souvent à des surdimensionnements, injustifiés, donc à des surcoûts. En outre certains chargements peuvent être ignorés au moment de la conception et découverts seulement à l’exploitation. Les structures vieillissent, les propriétés des matériaux peuvent se trouver altérées, les modes d’exploitation ne sont plus les mêmes.
La démarche probabiliste, de fiabilité des structures, s’avère alors essentielle. Le risque est évalué sous la forme d’une probabilité et non plus sous la forme d’un jugement binaire (le dimensionnement est acceptable ou non, l’exploitation peut être poursuivie ou non).
Le calcul de cette probabilité permet de réduire le risque de défaillance par l’organisation des programmes de maintenance-inspection, de prolonger la durée d’exploitation en optimisant leur utilisation.
Cet article donne quelques éléments de fiabilité des structures. Après avoir identifié quelques causes de défaillance des structures et les mesures préventives associées pour éviter la défaillance, on rappelle les caractéristiques principales des composants passifs. On se place volontairement avec une vision d’exploitant, cherchant à minimiser le risque de défaillance d’une structure et à optimiser son exploitation. On présente très brièvement la méthodologie d’Optimisation de la Maintenance par la Fiabilité (OMF-structures), appliquée aux composants passifs, dont un des rôles est d'optimiser les inspections en service et la maintenance. On précise brièvement les fondements du calcul de fiabilité des structures. Le lecteur intéressé pourra se référer aux ouvrages mis en référence pour de plus amples développements et pour la présentation d’applications industrielles.
Il est évident que l’on ne peut pas faire le tour en un article d’un domaine qui a donné lieu à de multiples publications depuis l’Antiquité. On se référera en particulier à la référence , bien documentée et aux références .
Le lecteur pourra consulter à titre d’exemple l’article Eurocodes [C 60] du traité Construction.
VERSIONS
- Version courante de juil. 2011 par André LANNOY
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Sécurité et gestion des risques
(475 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
8. Conclusion
On sait que l’analyse de risque nécessite l’évaluation de deux grandeurs : la probabilité d’apparition, l’ampleur des conséquences, généralement désagréables.
La fiabilité des structures est tout à fait conforme à ce schéma. À partir d’une équation physique déterministe de défaillance (la composante déterministe), on détermine la probabilité de cette défaillance (la composante probabiliste). Cette méthodologie est tout à fait applicable à d’autres phénomènes physiques. On pense tout de suite au rayonnement thermique, aux explosions accidentelles. Le cas des explosions est très illustratif : il nécessite une analyse à la fois déterministe et probabiliste, permettant le calcul de la probabilité d’observer des effets mécaniques de ces explosions.
On a pu voir que ces résultats déterministes et probabilistes sont très dépendants :
-
du mécanisme de dégradation, et par conséquent des critères de dégradation ;
-
des données d’entrée et de leur incertitude.
Tout effort en vue d’améliorer les données d’entrée ne peut être que bénéfique, afin de diminuer les incertitudes. Une fois de plus, le retour d’expérience démontre son rôle stratégique.
Notons aussi que, comme pour l’analyse des explosions accidentelles, l’analyse de fiabilité des structures inclut des critères d’acceptabilité.
De plus la fiabilité des structures correspond à un changement de culture et à une évolution de la culture du risque. Bien souvent, y compris chez les organismes d’homologation, on raisonne en déterministe, sur une seule des deux composantes du risque. Lorsque l’on s’intéresse aux phénomènes physiques et à leur impact, la dimension probabiliste est souvent ignorée et lorsque l’on calcule de façon déterministe des effets, on ne sait pas à quelle probabilité ils sont associés. Il faut changer cet état d’esprit et les méthodes de fiabilité des structures y contribuent. Elles peuvent être appliquées pour l’approche probabiliste des phénomènes physiques.
Après l’effort sur les données d’entrée (leur collecte, leur complétude, leur traitement, leur interprétation), la sensibilisation à la culture du risque et à l’approche probabiliste...
Cet article fait partie de l’offre
Sécurité et gestion des risques
(475 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
Cet article fait partie de l’offre
Sécurité et gestion des risques
(475 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive